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We consider the use of a running measure of power spectrum disorder to distinguish between the normal
sinus rhythm of the heart and two forms of cardiac arrhythmia: atrial fibrillation and atrial flutter. This spectral
entropy measure is motivated by characteristic differences in the power spectra of beat timings during the three
rhythms. We plot patient data derived from ten-beat windows on a “disorder map” and identify rhythm-defining
ranges in the level and variance of spectral entropy values. Employing the spectral entropy within an automatic
arrhythmia detection algorithm enables the classification of periods of atrial fibrillation from the time series of
patients’ beats. When the algorithm is set to identify abnormal rhythms within 6 s, it agrees with 85.7% of the
annotations of professional rhythm assessors; for a response time of 30 s, this becomes 89.5%, and with 60 s,
it is 90.3%. The algorithm provides a rapid way to detect atrial fibrillation, demonstrating usable response
times as low as 6 s. Measures of disorder in the frequency domain have practical significance in a range of
biological signals: the techniques described in this paper have potential application for the rapid identification
of disorder in other rhythmic signals.
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I. INTRODUCTION

Cardiovascular diseases are a group of disorders of the
heart and blood vessels and are the largest cause of death
globally �1�. An arrhythmia is a disturbance in the normal
rhythm of the heart and can be caused by a range of cardio-
vascular diseases. In particular, atrial fibrillation is a com-
mon arrhythmia affecting 0.4% of the population and 5%–
10% of those over 60 years old �2�; it can lead to a very high
�up to 15-fold� risk of stroke �3�. Heart arrhythmias are thus
a clinically significant domain in which to apply tools inves-
tigating the dynamics of complex biological systems �4�.
Since the pioneering work of Akselrod et al. on spectral as-
pects of heart rate variability �5�, such approaches have
tended to focus on frequencies lower than the breathing rate.
By contrast, we develop a spectral entropy measure to inves-
tigate heart rhythms at higher frequencies, similar to the
heart rate itself, that can be meaningfully applied to short
segments of data.

Conventional physiological measures of disorder, such as
approximate entropy �ApEn� and sample entropy �SampEn�,
typically consider long time series as a whole and require
many data points to give useful results �6�. With current im-
plant technology and the increasing availability of portable
electrocardiogram �ECG� devices �7�, a rapid approach to
fibrillation detection is both possible and sought after.
Though numerous papers propose rapid methods for detect-
ing atrial fibrillation using the ECG ��8� and references
therein�, less work has been done using only the time series
of beats or intervals between beats �RR intervals�. In one
study, Tateno and Glass use a statistical method comparing
standard density histograms of �RR intervals �9�. The
method requires around 100 intervals to detect a change in
behavior and thus may not be a tool suitable for rapid re-
sponse.

Measures of disorder in the frequency domain have prac-
tical significance in a range of biological signals. The irregu-
larity of electroencephalography �EEG� measurements in
brain activity, quantified using the entropy of the power spec-
trum, has been suggested to investigate localized desynchro-
nization during some mental and motor tasks �10�. Thus, the
techniques described here have potential application for the
rapid identification of disorder in other rhythmic signals.

In this paper we present a technique for quickly quantify-
ing disorder in high-frequency event series: the spectral en-
tropy is a measure of disorder applied to the power spectrum
of periods of time series data. By plotting patient data on a
disorder map, we observe distinct thresholds in the level and
variance of spectral entropy values that distinguish normal
sinus rhythm from two arrhythmias: atrial fibrillation and
atrial flutter. We use these thresholds in an algorithm de-
signed to automatically detect the presence of atrial fibrilla-
tion in patient data. When the algorithm is set to identify
abnormal rhythms within 6 s, it agrees with 85.7% of the
annotations of professional rhythm assessors; for a response
time of 30 s, this becomes 89.5%, and with 60 s, it is 90.3%.
The algorithm provides a rapid way to detect fibrillation,
demonstrating usable response times as low as 6 s and may
complement other detection techniques.

The structure of the paper is as follows. Section II intro-
duces the data analysis and methods employed in the ar-
rhythmia detection algorithm, including a description of the
spectral entropy and disorder map in the context of cardiac
data. The algorithm itself is presented in Sec. III, along with
results for a range of detection response times. In Sec. IV, we
discuss the results of the algorithm and sources of error, and
compare our method to other fibrillation detection tech-
niques. An outline of further work is presented in Sec. V,
with a summary of our conclusions closing the paper in Sec.
VI.
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II. DATA ANALYSIS

After explaining how we symbolize cardiac data in Sec.
II A, the spectral entropy measure is introduced �Sec. II B�
and appropriate parameters for cardiac data are selected �Sec.
II C�. We then show how the various rhythms of the heart
can be identified by their position on a disorder map defined
by the level and variance of spectral entropy values �Sec.
II D�.

Data were obtained from the MIT-BIH atrial fibrillation
database �afdb�, which is part of the physionet resource �11�.
This database contains 299 episodes of atrial fibrillation and
13 episodes of atrial flutter across 25 subjects �henceforth
referred to as “patients”�, where each patient’s Holter tape is
sampled at 250 Hz for 10 h. The onset and end of atrial
fibrillation and flutter were annotated by trained observers as
part of the database. The timing of each QRS complex �de-
noting contraction of the ventricles and hence a single, “nor-
mal,” beat of the heart� had previously been determined by
an automatic detector �12�.

A. Symbolizing cardiac data

We convert event data into a binary string, a form appro-
priate for use in the spectral entropy measure. The beat data
is an event series: a sequence of pairs denoting the time of a
beat event and its type. We categorize normal beats as N and
discretize time into short intervals of length � �for future
reference, symbols are collected with summarizing descrip-
tions in Table I�. Each interval is categorized as � or N
depending on whether it contains no recorded event or a
normal beat, respectively. This yields a symbolic string of
the form . . .���N��N�N���N. . .. This symbolic
string can be mapped to a binary sequence �N→1, �→0�.
This procedure is shown schematically in Fig. 1. Naturally,
this categorization can be extended to more than two states
and applied to other systems. For example, ectopic beats
�premature ventricular contractions� could be represented by
V to yield a symbolic string drawn from the set �� ,N ,V�. An
additional map could then be used to extract a binary string
representing the dynamics of ectopic beats.

B. Spectral entropy

We now present a physiological motivation for using a
measure of disorder in the context of cardiac dynamics, fol-

lowed by a description of the spectral entropy measure. Fol-
lowing Ref. �3�, atrial fibrillation is characterized by the
physiological process of concealed conduction in which the
initial regular electrical impulses from the atria �upper cham-
ber of the heart� are conducted intermittently by the atrioven-
tricular node to the ventricles �lower chamber of the heart�.
This process is responsible for the irregular ventricular
rhythm that is observed. Atrial flutter has similar causes to
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FIG. 1. Schematic of cardiac data analysis and the automatic
arrhythmia detection algorithm. A full description of the data analy-
sis �stages 1–3� is given in the Data Analysis section, Sec. II, of the
text; the remaining steps �stages 4 and 5� are described in the Al-
gorithm section, Sec. III. MIT-BIH atrial fibrillation database event
data �stage 1� are discretized at sampling interval �, then mapped to
give a binary series representing the dynamics of regular beats N
�stage 2�. A sequence of spectral entropy windows, of length �, is
applied with overlap parameter a to obtain a series of spectral en-
tropy values �stage 3�. Variance windows, of length � with overlap
parameter b, are applied to obtain a series of variance values.
Threshold conditions in the level and variance of spectral entropy
values allow for the classification of periods of atrial fibrillation
�AF� and other rhythms �N�, typically normal sinus rhythm �stage
4�. Finally, the most frequent prediction in each modal smoothing
window, of length � with overlap parameter c, is identified
�AF� ,N�� to obtain the final algorithm output �stage 5�. For defini-
tions and typical values for algorithm parameters, see Table I.

TABLE I. Summary of arrhythmia detection algorithm window and overlap symbols. A full description of
the spectral entropy and variance windows is given in the Data Analysis section, Sec. II, of the text; the
modal smoothing window is described in the Algorithm section, Sec. III. Cardiac data in the MIT-BIH atrial
fibrillation database are sampled at intervals of �=30 ms. The number of intervals contained in the spectral
entropy window, L, is chosen for each patient such that the spectral entropy window is expected to contain
ten beats. In the variance window, M represents the number of spectral entropy values used in finding the
variance; for response times 6 s, 30 s, and 60 s, we consider M equal to 4, 20, and 40, respectively. Speci-
fying �, L, and M fixes the remaining parameters. We define overlap parameter a=� /4. For simplicity, we set
c=b=a.

Window Symbol Definition Typical value Overlap Typical value

Spectral entropy � L� 6 s a 1.5 s

Variance � Ma=ML� /4 6 s, 30 s, 60 s b 1.5 s

Modal smoothing � 2�+b= �2M +1�L� /4 12 s, 60 s, 120 s c 1.5 s
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atrial fibrillation but is less common; incidences of flutter can
degenerate into periods of fibrillation. Commonly, alternate
electrical waves are conducted to the ventricles, maintaining
the initial regular impulses originating from the atria. This
results in a rhythm with pronounced regularity. Normal sinus
rhythm can be characterized by a slightly less regular beating
pattern occurring at a slower rate compared to atrial flutter.
Example electrocardiograms for the three rhythms are shown
in the boxed-out areas of Fig. 3, below.

Given these physiological phenomena, the spectral en-
tropy can be used as a natural measure of disorder, enabling
one to distinguish between these three rhythms of the heart.
Presented with a possibly very short period of heart activity,
one can create a length-L, duration-L�, binary string. One
then obtains the corresponding power spectrum of this period
of heart activity using the discrete Fourier transform �13�.
Given a �discrete� power spectrum with the ith frequency
having power Ci, one can define the “probability” of having
power at this frequency as

pi =
Ci

�iCi
. �1�

When employing the discrete Fourier transform, the summa-
tion runs from i=1 to i= L

2 . One can then find the entropy of
this probability distribution �with i having the same summa-
tion limits as in Eq. �1��:

H = �
i

− pi log2 pi. �2�

Breaking the time series into many such blocks of duration
L�, each with its own spectral entropy, thus returns a time
series of spectral entropies. Note that this measure is not
cardiac specific and can be applied to any event series. For
example, a sine wave having period an integer fraction of L�
will be represented in Fourier space by a � function �for
L�→�� centered at its fundamental frequency; this gives the
minimal value for the spectral entropy of zero. Other similar
frequency profiles, with power located at very specific fre-
quencies, will lead to correspondingly low values for the
spectral entropy. By contrast, a true white noise signal will
have power at all frequencies, leading to a flat power spec-
trum. This case results in the maximum value for the spectral
entropy:

Hmax = log2�L

2
	 . �3�

As will be discussed in the following section, H can be nor-
malized by Hmax to give spectral entropy values in the range
�0,1�.

Note that analytical tools relying on various interbeat in-
tervals have been devised in the past �e.g., �9,14,15��. Here,
we demonstrate how our measure relates to those studies.
Any series of events can be represented by

f�t� = �
k

��t − tk� , �4�

where tk is the time when an event �beat� occurs. The corre-
sponding power spectrum is, then,

P��� 	 �
k,k�

cos��
tk − tk�
� . �5�

The spectral entropy is, by definition,

Hcont =� d�p���log p��� , �6�

where p���= P��� /�d��P����. We therefore see that Eq. �6�
depends on all of the intervals between any two events �cf.
Eq. �5��. This is in contrast to studies on the distribution of
beat-next-beat intervals in �14�. We believe that this gener-
alization enriches the structure captured in the short-time
segments and thus allows for the shortening of the detection
response time in our arrhythmia detection algorithm. We fi-
nally note that since the spectral entropy depends only on the
shape of the power spectrum, it is relatively insensitive to
small, global, shifts in the spectrum of the signal.

C. Parameter selection

We now introduce parameters for the spectral entropy
measure and select values appropriate for cardiac data. The
sampling interval acts like a low-pass filter on the data since
all details at frequencies above 1 / �2�� Hz, the upper fre-
quency limit, are discarded �16�. The sampling interval must
be sufficiently small such that no useful high-frequency com-
ponents are lost. We choose a sampling interval �=30 ms,
since processes like the heart beat interval, breathing, and
blood pressure fluctuations occur at much lower frequencies.
The upper frequency limit in the power spectrum is consis-
tent with the inclusion of all dominant and subsidiary fre-
quency peaks present during atrial fibrillation �17�.

We call the duration over which the power spectrum is
found, and hence a single spectral entropy value is obtained,
the spectral entropy window: �=L� �L is the number of sam-
pling intervals required�. With our value for �, the shortest
spectral entropy window giving sufficient resolution in the
frequency domain for cardiac data is found for L around 200,
�
6 s. This value for � is equivalent to approximately ten
beats on average over the entire afdb. It is consistent with
previous work on animal hearts looking at the minimum win-
dow length required to determine values for the dominant
frequencies present during atrial fibrillation �18�. To take into
account the heterogeneity of patients’ resting heart rates
�HRs�, we fix � and use an L value for each patient such that
there are on average ten beats in each spectral entropy win-
dow. Thus, �=L�HR��=��HR�. All subsequent parameters
that are determined by L will similarly be a function of the
average heart rate; we will henceforth drop the HR notation
for clarity, with the dependence on average heart rate under-
stood implicitly. Patients with higher average heart rate re-
quire smaller L and, therefore, have a shorter spectral en-
tropy window. By invoking individual values for L, the
maximum spectral entropy for each patient is constrained to
a particular value: Hmax �cf. Eq. �3��. To make spectral en-
tropy values comparable, we normalize the basic spectral
entropy values for each patient �Eq. �2�� by their theoreti-
cally maximal spectral entropy value. The spectral entropy
can thus take values in the range �0,1�. In choosing L near its
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minimally usable value, we necessarily have a small number
of beats compared to the window length �. In such cases, a
window shape having a low value for the equivalent noise
bandwidth �ENBW� is preferable �19�. The ENBW is a mea-
sure of the noise associated with a particular window shape:
it is defined as the width of a fictitious rectangular filter such
that power in that rectangular band is equal to the actual
power of the signal. The condition for low ENBW is satisfied
by the rectangular window. To maximize the available data,
a sequence of overlapping rectangular windows separated by
a time a is used. This results in a series of spectral entropy
values also separated by a. We follow the convention of
using adjacent window overlap of 75% �19�, leading to a
window separation time of a=L� /4. This gives a typical
value for a of 1.5 s. A summary of window and overlap
parameters is presented in Table I.

Figure 2 illustrates the spectral entropy measure applied
to patient 08378 from the afdb. We identify three distinct
levels in the spectral entropy value corresponding to the
three rhythms of the heart assessed in the annotations. Beat-
ing with a relatively regular pattern, which can be associated
with normal sinus rhythm, sets a base line for the spectral
entropy. The irregularity associated with fibrillation causes
an increase in the value, with the pronounced regularity of
flutter identifiable as a decrease in the spectral entropy. We
note that power spectrum profiles in frequency space should
remain qualitatively similar for a given rhythm type, regard-
less of the underlying heart rate. For example, periodic sig-
nals can be characterized by peaks at constituent frequencies,
independent of the beat production rate; similarly, highly dis-
ordered signals can be consistently identifiable by their flat
power spectra. This confers a significant advantage over
methods relying solely on the heart rate. We find considering

only the instantaneous heart rate and its derivatives to be
insufficient in consistently distinguishing between sinus
rhythm, fibrillation, and flutter; this point is addressed further
in the Discussion section �Sec. IV A�.

D. Cardiac disorder map

Having identified differences in the level of the spectral
entropy measure corresponding to different rhythms of the
heart, we suggest that there should be a similar distinction in
the variance of a series of spectral entropy values. We pro-
pose that the fibrillating state may represent an upper limit to
the spectral entropy measure; once this state is reached,
variations in the measure’s value are unlikely until a new
rhythm is established. By contrast, the beating pattern of
normal sinus rhythm is not as disordered as possible and can
therefore show variation in the spectral entropy values taken.
Inspecting the data, one frequently observes transitions be-
tween periods of very regular and more irregular �though still
clearly sinus� beating. Thus, normal sinus rhythm will natu-
rally explore more of the spectral entropy value range than
atrial fibrillation, which is consistently irregular in character
�including some dominant frequencies �17��. Furthermore, in
defining the spectral entropy window to be constant for a
given patient, some dependence on the heart rate is retained,
despite accounting for each patient’s average heart rate. This
dependence can cause additional harmonics to appear in the
power spectrum, increasing the variation of spectral entropy
values explored during normal sinus rhythm. Last, windows
straddling transitional periods of the heart rate will also dem-
onstrate atypical power spectra, further compounding the in-
crease in the variance when comparing normal sinus rhythm
to atrial fibrillation. We do not conjecture on �and do not
observe� a characteristic difference in the variance of spectral
entropy values for atrial flutter, relying on the spectral en-
tropy level to distinguish the arrhythmia from fibrillation and
normal sinus rhythm.

In theory, the spectral entropy can take values in the range
�0,1�. Possible variances in sequences of spectral entropy
values then lie in the range �0, 1

4 �. These two ranges deter-
mine the two-dimensional cardiac disorder map. In practice,
we plot the standard deviation rather the variance for clarity,
and so rhythm thresholds are given in terms of the standard
deviation. Due to finite time and windowing considerations,
the spectral entropy is restricted to a subset of values within
its possible range. We attempt to find limits in the values that
the spectral entropy can take by applying the measure to
synthetic event series: a periodic series with constant inter-
beat interval and a random series drawn from a Poisson prob-
ability distribution with a mean firing rate. For a heart rate
range from 50 beats per minute �bpm� to 200 bpm in 1-bpm
increments, we obtain 150 synthetic time series for the peri-
odic and Poisson cases, respectively. The average spectral
entropy value over the 150 time series in the periodic case is
0.67
0.04; the average value in the Poisson case is
0.90
0.01. By assuming the maximum variance to occur in
a rhythm that randomly changes between the periodic and
Poisson cases with equal probability, an approximate upper
bound for the standard deviation can be calculated: using the
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FIG. 2. �Color online� Spectral entropy time series �top�, profes-
sional rhythm annotation �middle�, and arrhythmia detection algo-
rithm prediction �bottom� for patient 08378 from the MIT-BIH
atrial fibrillation database. Event data is sampled at 30-ms intervals
approximately 200 times such that there are on average ten beats
per spectral entropy window. Each window, of length 6 s for a
typical patient, contributes one value of the spectral entropy; win-
dows have a typical overlap of 1.5 s. For the rhythm annotation and
algorithm prediction, AF denotes atrial fibrillation, AFL denotes
atrial flutter, and N represents all other rhythms. The algorithm
prediction �primed symbols omitted for clarity� demonstrates good
agreement with professional annotations; shown for a response time
of 30 s, thresholds � fib=0.84, � fl=0.70, and � fib=0.018.
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two average spectral entropy values in the definition of the
standard deviation, we find the upper bound to be approxi-
mately 0.115.

Figure 3 illustrates the cardiac disorder map for all 25
patients comprising the afdb. The standard deviation is cal-
culated from M adjacent spectral entropy values �separated
by a�, corresponding to a duration of �=Ma=ML� /4; we
call � the variance window. In this case, we have M equal to
20, and so � has a length of 30 s for a typical patient. We
will see in the following section that � sets the response time
of the arrhythmia detection algorithm. The smallest usable
number for M is 4, corresponding to the rapid response case
where � is typically 6 s. We have M equal to 40 for the case
where � is typically 60 s. In Fig. 3, each value of the stan-
dard deviation is plotted against the average value of the
spectral entropy within the variance window and is colored
according to the rhythm assessment provided in the annota-
tions. As with spectral entropy windows, variance windows
have an overlap b. For simplicity, we set b=a, giving a typi-
cal value of 1.5 s. Note that b can take any integer multiple
of a, though doing so does not alter the results substantially.

One observes atrial fibrillation to be situated in the upper
left of the disorder map, consistent with having a high value
for the spectral entropy and a low value for the variance.

Atrial flutter has a lower average value for the spectral en-
tropy, as expected. For the given case with � typically 30 s,
we determine fibrillation to exhibit spectral entropy levels
above � fib=0.84, with flutter present below � fl=0.70. A stan-
dard deviation threshold can be inferred at around � fib
=0.018, with the majority of fibrillating points falling below
that value. Although beyond the expository purpose of this
paper, we note that these approximate thresholds can be fur-
ther optimized using, for example, discriminant analysis
�20�. Disorder maps for the three detection response times
�6 s, 30 s, 60 s� are qualitatively similar; increasing the
length of the variance window improves the separation of
rhythms in the disorder map at a cost of requiring more data
per point. From these observations, we hypothesize threshold
values in the spectral entropy level and variance that distin-
guish the two arrhythmias from normal sinus rhythm. In the
following section, thresholds drawn from the disorder map
are used in an arrhythmia detection algorithm.

III. ALGORITHM

In this section, we present a description of the automatic
arrhythmia detection algorithm �Sec. III A�, followed by re-
sults for a range of detection response times �Sec. III B�.

A. Arrhythmia detection algorithm

The arrhythmia detection algorithm uses thresholds in the
level and variance of spectral entropy values observed in the
cardiac disorder map to automatically detect and label
rhythms in patient event series data. The afdb contains sig-
nificantly fewer periods of atrial flutter compared to atrial
fibrillation and normal sinus rhythm �periods of flutter total
1.27 h, whereas periods of fibrillation total 91.59 h�; the
typical length of periods of flutter is of the order tens of
seconds. Of the eight patients annotated as having flutter,
only patients 04936 and 08378 have periods of flutter long
enough �i.e., 
�� for analysis by the algorithm. For this
reason we do not include here the flutter prediction method
of the algorithm, although extensions including flutter follow
a similar principle and are simple in practice to implement.
Other studies using the afdb �e.g., �9�� restrict themselves to
methods differentiating only between fibrillation and normal
sinus rhythm. Additional comments on the practicality of de-
tecting atrial flutter and selected results for flutter will be
given in the Discussion section �Sec. IV A�.

The five stages of the algorithm are shown in Fig. 1. The
first three stages have been covered in depth as part of the
Data Analysis section, but we include a brief summary here
for completeness. We first obtain a binary string representing
the dynamics of the heart for a given patient by discretizing
the physionet data every �=30 ms �stage 1 to stage 2�. In
stage 3, the spectral entropy measure is applied for windows
of duration �=L�, with L chosen for each patient such that
there are on average ten beats within the spectral entropy
window, giving � as 6 s for a typical patient. Using an over-
lap parameter a �typically 1.5 s� leads to a series of spectral
entropy values separated in time by this amount. Given no
prior knowledge of the provided rhythm assessments, we cal-
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FIG. 3. �Color online� Cardiac disorder map for all 25 patients
in the MIT-BIH atrial fibrillation database �afdb�. Boxed-out area:
example electrocardiograms for normal sinus rhythm, atrial fibrilla-
tion, and atrial flutter, taken from patient 04936. Spectral entropy
values are obtained from windows of event data expected to contain
ten beats; data are sampled at 30-ms intervals. For a typical patient,
each spectral entropy window is around 6 s in length and has an
overlap with adjacent windows of 1.5 s. For each point on the dis-
order map, the standard deviation and average spectral entropy level
are calculated from M adjacent spectral entropy values: we call this
the variance window �. Here, we have M equal to 20, and so � has
a typical length of 30 s; � represents the response time of the algo-
rithm. Normalized frequency histograms are disorder map projec-
tions onto the relevant axes. Rhythm assessments �N, AF, AFL� are
provided in the afdb. Atrial fibrillation is situated in the upper left of
the disorder map, consistent with having a high value for the spec-
tral entropy and a low value for the variance. Atrial flutter has a
lower average value for the spectral entropy, as expected. Fibrilla-
tion thresholds for the arrhythmia detection algorithm are set at
� fib=0.84 for the spectral entropy level and � fib=0.018 for the
standard deviation, as indicated on the disorder map.
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culate the standard deviation and average magnitude of M
spectral entropy values in variance windows of length �
=Ma preceding a given time point. We use the example case
of M equal to 20 �giving � as 30 s for a typical patient�. The
level and standard deviation thresholds for atrial fibrillation
are set consistent with values obtained from the cardiac dis-
order map; for this case, we determine � fib=0.84 and � fib
=0.018. Stage 4 generates preliminary predictions for the
rhythm state of the heart: we denote as fibrillating �AF� in-
stances where the spectral entropy level is greater than � fib
and the standard deviation is less than � fib, with all other
combinations considered to be normal sinus rhythm �N� �21�.
Setting the overlap of variance windows such that b=a, we
obtain a string of rhythm predictions drawn from the set �AF,
N� and separated in time by b.

Finally, in stage 5 we apply a rudimentary smoothing pro-
cedure to the initial string of rhythm predictions. For a par-
ticular prediction, we consider a preceding period �=2�+b
= �2M +1�L� /4, leading in this example to a typical length
for � of 61.5 s. We find the modal prediction: the prediction
�AF, N� occurring most frequently in �, labeling the modal
prediction �AF� ,N��. We call � the modal smoothing win-
dow. In this form, we understand the windows � and � as
setting the response time of the algorithm: � is defined in
terms of the number of preceding spectral entropy values
required for a given prediction; for � to register a change in
rhythm, over half of the predictions must suggest the new
rhythm. The response time is then �

2 , which is approximately
equal to �. We have the modal smoothing windows overlap-
ping with parameter c=b=a. This results in a final time se-
ries of predictions and constitutes the output of the arrhyth-
mia detection algorithm for a given patient. An example of
the algorithm output for patient 08378 �including a threshold
for atrial flutter� is shown in Fig. 2.

We apply the above steps, comprising the three data win-
dows �� ,� ,��, to each patient in the afdb. Specifying �, L,
and M fixes the remaining parameters, their exact magnitude
determined by L. A summary of windowing symbols can be
found in Table I. Values for the atrial fibrillation threshold
parameters �� fib and � fib� are kept the same for each patient
for a given response time. The results obtained from the
algorithm are described in the following section.

B. Algorithm results

We now present the results of the cardiac arrhythmia de-
tection algorithm for atrial fibrillation. The following win-
dow parameters were used: � is set to 30 ms, L is chosen
such that � is expected to contain ten beats, and M is set to
20; windows have overlap parameters c=b=a=� /4 �for
typical patients in the afdb, �
6 s, �
30 s, �
61.5 s, and
a
1.5 s�. Threshold values for fibrillation are set at � fib
=0.84 for the spectral entropy level and � fib=0.018 for the
standard deviation. Each prediction produced by the algo-
rithm �denoted by a primed symbol� is compared with the
rhythm assessment documented in the database and can be
classified into one of four categories �22�: true positive �TP�,
AF is classified as AF�; true negative �TN�, non-AF is clas-
sified as non-AF�; false negative �FN�, AF is classified as

non-AF�; false positive �FP�, non-AF is classified as AF�.
Percentages of these quantities for each patient and for the
entire afdb are given in Table II. Overall, we obtain a pre-
dictive capability �assessed using the percentage of predic-
tions agreeing with the provided annotations� of 89.5%. The
sensitivity and specificity metrics are defined by TP / �TP
+FN� and TN / �TN+FP�, respectively. The predictive value
of a positive test �PV+� and the predictive value of a negative
test �PV−� are defined by TP / �TP+FP� and TN / �TN+FN�,
respectively. These and results for other values of � are
given in Table III.

In repeating the algorithm with different values for the
variance window, shorter � represents a quicker response
time. We obtain for each � a new disorder map to determine
the relevant threshold values. For the rapid response case, �
typically 6 s, we alter the fibrillating thresholds in the ar-
rhythmia detection algorithm to be � fib=0.855 and � fib
=0.016; we find a predictive capability of 85.7%. With �

TABLE II. Results of the arrhythmia detection algorithm using
data in the MIT-BIH atrial fibrillation database. For the parameters
used, see Algorithm results section �Sec. III B�. Algorithm predic-
tions �primed symbols� are compared to annotated rhythm assess-
ments. TP, AF is classified as AF�; TN, non-AF is classified as
non-AF�; FN, AF is classified as non-AF�; FP, non-AF is classified
as AF�.

Patient TP �%� TN �%� FN �%� FP �%�

00735 0.8 85.0 0.0 14.2

03665 29.8 30.4 37.8 2.0

04015 0.5 92.4 0.2 6.9

04043 8.9 76.5 13.1 1.5

04048 0.4 98.8 0.7 0.1

04126 3.3 78.3 0.6 17.8

04746 53.6 43.8 0.8 1.8

04908 7.0 88.2 1.6 3.2

04936 43.1 19.0 36.3 1.6

05091 0.0 85.6 0.2 14.2

05121 56.9 30.5 8.4 4.2

05621 0.9 94.9 0.4 3.8

06426 92.7 1.9 3.1 2.3

06453 0.4 97.7 0.7 1.2

06995 42.8 47.1 3.0 7.1

07162 100.0 0.0 0.0 0.0

07859 83.1 0.0 16.9 0.0

07879 53.3 38.1 8.5 0.1

07910 13.5 85.7 0.5 0.3

08215 80.0 19.7 0.3 0.0

08219 18.3 59.8 3.8 18.1

08378 20.0 77.3 2.4 0.3

08405 68.9 28.4 2.7 0.0

08434 3.8 91.6 0.2 4.4

08455 65.6 31.5 2.9 0.0

Total 36.1 53.4 6.5 4.0

True: 89.5% False: 10.5%
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typically 60 s, the fibrillating thresholds become � fib=0.84
and � fib=0.019; the predictive capability is 90.3%.

IV. DISCUSSION

We begin with an exposition of the results presented in
the previous section and the effects of different parameter
values on the output of the arrhythmia detection algorithm.
This is followed by a discussion, with reference to the elec-
trocardiograms provided as part of the afdb, of disagree-
ments between the provided rhythm annotations, measures
relying solely on the heart rate, and the predictions of our
algorithm �Sec. IV A�. Having shown that some of the anno-
tations may be unreliable, we comment on situations where
the algorithm may still present incorrect predictions �Sec.
IV B�. The benefits of the spectral entropy measure com-
pared to other fibrillation detection methods are then given
�Sec. IV C�. We close the section with a discussion of the
systematic windowing errors present in our procedure �Sec.
IV D�.

Instances of atrial fibrillation constitute approximately
40% of the afdb. If we consider a null model where we
constantly predict normal sinus rhythm, we would expect a
predictive capability of around 60%. In Table III, we observe
an improvement in the predictive capability of the detection
algorithm when the length of the variance window, �, is
increased from 6 s �85.7%� to 60 s �90.3%� for a typical
patient. The choice of shorter � improves the response time
of the algorithm by requiring fewer data per prediction; val-
ues for � less than 6 s do not incorporate enough data to give
meaningful results. Increasing � beyond 30 s improves the
predictive capability very little. This suggests that additional
factors, independent of the specific parameters chosen here,
need to be considered. Results in Table II for the case �
typically 30 s indicates an overall predictive capability of
89.5%. For individual patients, the predictive capability
ranges from 60.2% �patient 03665� to 100% �patient 07162�.
To explain this variation, we investigate the form of patient
ECGs during periods of disagreement between annotation
and prediction. Examples of the ECGs referred to in Secs.
IV A and IV B are included in the supplementary informa-
tion that accompanies this paper �23�.

A. Disagreements with annotations

Rhythm assessments have been questioned before �9�;
here, we give explicit examples where we believe the ECGs

to suggest a rhythm different from that given by the annota-
tion. We observe in the ECGs of patients 08219 and 08434
periods of atrial fibrillation that we believe to have been
missed in the annotations, but are correctly identified by our
detection algorithm �24�. Cases such as these serve to nega-
tively impact the results of the algorithm unfairly; however,
we note that such instances comprise a small proportion of
the afdb. Atrial flutter may have been misannotated in pa-
tients 04936 and 08219 �25�; in particular, two considerable
periods of flutter may have been annotated incorrectly in
patient 04936. This unreliability of rhythm assessment, com-
pounded with the limited number of periods of atrial flutter
in the database, prevents us from drawing meaningful quan-
titative conclusions regarding the success of the detection
algorithm in identifying flutter. Despite this, we believe that
the spectral entropy is in principle still capable of identifying
flutter �see Fig. 2�. Returning to the two patients with signifi-
cant periods of flutter, we run the algorithm with the inclu-
sion of a threshold for atrial flutter motivated by each pa-
tient’s individual disorder map: � fl �other parameters as per
the Algorithm Results section with M =20�. For patient
08378 with � fl=0.70, we find 86.3% agreement with the
annotations for flutter; for patient 04936 with � fl=0.81, we
find 66.9% agreement, bearing in mind the points raised
above.

Consideration of ECGs demonstrates the inability of mea-
sures relying solely on the heart rate and its derivatives to
consistently distinguish between fibrillation, flutter, and other
rhythms. Atrial fibrillation is characteristically associated
with an elevated heart rate �100–200 bpm� �3�; atrial flutter
exhibits an even higher heart rate �
150 bpm� with a sharp
transition from normal sinus rhythm. This expected behavior,
while found to hold qualitatively for the majority of patients,
fails during large periods for patient 06453 and is completely
reversed for patient 08215 �26�. The resting heart rate is also
found to differ dramatically between patients in the afdb. The
spectral entropy, being less susceptible to variations in the
heart rate �27�, is better suited to form the basis of a detec-
tion algorithm compared to a measure relying solely on heart
rate.

B. Other rhythms

The unreliability of parts of the annotations still does not
account for all false predictions produced by the detection
algorithm. We suggest the presence of other rhythms within
the afdb to be an additional factor that needs to be consid-
ered. Table III shows the sensitivity metric to be consistently
lower for all values of �, suggesting a bias towards false
negatives �FNs occur when AF is classified as non-AF��. FNs
total 6.5% for � typically 30 s in Table II and comprise
36.3% of predictions for patient 04936. Given our require-
ment in the detection algorithm for periods that are classed
as AF to satisfy both a spectral entropy level and variance
condition, FNs are most likely to arise when one threshold
condition fails to be met. Cases where the variance threshold
is not satisfied may be associated with the physiological phe-
nomena of fib-flutter and paroxysmal atrial fibrillation, and
would be located right of the standard deviation threshold on

TABLE III. Summary of results for variance windows of differ-
ent lengths. Length is set by parameter M =4, 20, 40, giving dura-
tions for typical patients of �
6 s, 30 s, 60 s, respectively. Shorter
� indicates a quicker response time. Metrics defined as sensitivity,
TP / �TP+FN�; specificity, TN / �TN+FP�; PV+, TP / �TP+FP�; PV−,
TN / �TN+FN�.

M � True �%� Sens. �%� Spec. �%� PV+ �%� PV− �%�

4 6 s 85.7 82.1 88.4 83.9 87.0

20 30 s 89.5 84.8 92.9 89.8 89.2

40 60 s 90.3 83.6 95.2 92.8 88.7
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the disorder map �Fig. 3�. Fib-flutter corresponds to periods
where the rhythm transitions in quick succession between
atrial fibrillation and flutter �28�, with paroxysmal fibrillation
describing periods where atrial fibrillation stops and starts
with high frequency. Such behavior naturally causes the vari-
ance to increase and one might question whether it is still
appropriate to classify those periods as standard atrial fibril-
lation. We identify in the ECG of patient 04936 periods of
fib-flutter which likely accounts for the high proportion of
FN results �29�; by inspecting the patient’s disorder map, we
indeed observe points annotated as atrial fibrillation with un-
characteristically high standard deviation, signifying that fib-
flutter would be a more accurate rhythm classification. Cases
where the spectral entropy level threshold is not met can
occur when QRS complexes indicative of atrial fibrillation
appear with unusually regular rhythm; such behavior would
lie below the level threshold on the disorder map. Owing to
the small number of beats contained within each window,
such occurrences inevitably arise; the process of modal
smoothing lessens the impact of this phenomenon in the ar-
rhythmia detection algorithm.

False positives �FPs occur when non-AF is classified as
AF��, which comprise 4.0% of the afdb for � typically 30 s,
may also have a physiological explanation. During sinus ar-
rhythmia, there are alternating periods of slowing and in-
creasing node firing rate, while still retaining QRS com-
plexes indicative of normal sinus rhythm. These alternating
periods increase the irregularity of beats within the spectral
entropy window. If the variance threshold is also satisfied,
sinus arrhythmia may be incorrectly classified as AF� by the
arrhythmia detection algorithm. Sinus arrest occurs when the
sinoatrial node fails to fire and results in behavior that is
similar in principle to sinus arrhythmia; these two conditions
are likely responsible for the high proportion of FPs �14.2%�
that are observed in patient 05091 �30�.

C. Comparison to other methods

Vikman et al. showed that decreased ApEn values of heart
beat fluctuations have been found to precede �at time scales
of the order an hour� spontaneous episodes of atrial fibrilla-
tion in patients without structural heart disease �31�. We
stress that the algorithm presented here is not intended to
predict in advance occurrences of fibrillation; rather, it is
designed to detect the onset of fibrillation as quickly as pos-
sible using only inter-beat intervals. Tateno and Glass �9�
present an atrial fibrillation detection method that is statisti-
cal in principle and based upon an observed difference in the
standard density histograms of �RR intervals �the difference
in successive interbeat intervals�. A series of reference stan-
dard density histograms characteristic of atrial fibrillation �as
assessed in the annotations� is first obtained from the afdb.
Their detection algorithm is rerun on the afdb by taking 100
interbeat intervals and comparing them to the reference his-
tograms, where appropriate predictions can then be made.
The reference histograms rely on the correctness of the an-
notations in order to determine fibrillation, whereas the
thresholds in our algorithm are only weakly dependent on the
data set under consideration. Figure 3 is an empirical obser-

vation; in future analyses, we would like to use fibrillation
thresholds derived from a data set separate from the one
under consideration.

Sarkar et al. have developed a detector of atrial fibrillation
and tachycardia that uses a Lorentz plot of �RR intervals to
differentiate between rhythms �32�. The detector is shown to
perform better for episodes of fibrillation greater than 3 min
and has a minimum response time of 2 min. By contrast, our
method is applicable to short sections of data, enabling
quicker response times to be used. We see our algorithm
complementing other detection techniques, with the potential
for an implementation that combines more than one method.
Combining methods becomes increasingly relevant when
running algorithms on data sets containing a variety of ar-
rhythmias. As noted in �9�, other arrhythmias often show
irregular RR intervals, and previous studies have found dif-
ficulty in detecting atrial fibrillation based solely on RR in-
tervals �33�.

D. Systematic error

There are two intrinsic sources of error in the spectral
entropy measure related to the phenomenon of spectral leak-
age: that due to the “picket-fence effect” �34� �where fre-
quencies in the power spectrum fall between discrete bins�
and that due to finite window effects �19� �where, for a given
frequency, an integer number of periods does not fall into the
spectral entropy window�. We attempt to quantify this error
by applying the measure �with parameters as per the Data
Analysis section� to synthetic event series: a periodic series
with constant interbeat interval. For a heart rate range of
50–200 bpm in 1-bpm increments, we obtain 150 synthetic
time series. We find the average error in the spectral entropy
over the 150 time series to be 0.02. The average standard
deviation value �with variance windows having M equal to
20 spectral entropy values� over the 150 time series is
0.011
0.009; the average error on these standard deviation
values due to windowing is 0.0002.

The presence of some form of error associated with finite
windows is unavoidable. We have attempted to minimize
such errors by choosing parameters that achieve a balance
between usability and error magnitude. There is still scope
for fine-tuning parameters—in particular, trying a variety of
window shapes to further reduce the affect of spectral leak-
age. However, we find the general results to be robust to a
range of window parameters, implying any practical effect of
windowing errors to be minimal when compared to the other
issues discussed in this section.

V. FURTHER WORK

Additional directions for this work include refining and
extending our cardiac study with a view to clinical imple-
mentation. Furthermore, we suggest that rhythmic signals
arising from other biological systems may have application
for the techniques described in this paper. An investigation of
the optimal windowing parameter set would be instructive
since our findings suggest the existence of physiological
thresholds in the spectral entropy level and variance that are
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applicable to a variety of patients. As noted at the end of Sec.
IV C, one challenge would be to investigate and improve the
utility of the measure �alone or combining methods� when
applied to patients that demonstrate a mix of different pa-
thologies and arrhythmias. Adjusting the spectral entropy
window to covary with instantaneous heart rate so that �
always contains ten beats exactly would further reduce issues
related to variations in the heart rate. Extending the algo-
rithm to include other dimensions in the disorder map �e.g.,
heart rate� will likely improve the accuracy of results and
may increase the number of arrhythmias the spectral entropy
can distinguish between.

An accurate automatic detector of atrial fibrillation would
be clinically useful in monitoring for relapse of fibrillation in
patients and in assessing the efficacy of antiarrhythmic drugs
�35�. An implementation integrated with an ambulatory ECG
or heart rate monitor would be useful in improving the un-
derstanding of arrhythmias on time scales longer than that
available using conventional ECG analysis techniques alone.

Measures of disorder in the frequency domain have prac-
tical significance in a range of biological signals. For ex-
ample, the regularity of the background electroencephalogra-
phy �EEG is the measurement of electrical activity produced
by the brain as recorded from electrodes placed on the scalp�
alters with developmental and psychophysiological factors:
some mental or motor tasks cause localized desynchroniza-
tion; in addition, the background becomes more irregular in
some neurological and psychiatric disorders ��10� and refer-
ences therein�. The spectral entropy method and the concept
of the disorder map described in this paper are not cardiac
specific: it would be instructive to adapt these ideas to other
rhythmic signals where a rapid detection of arrhythmia
would be informative.

VI. CONCLUSION

In this paper we have presented an automatic arrhythmia
detection algorithm that is able to rapidly detect the presence
of atrial fibrillation using only the time series of patients’
beats. The algorithm employs a general technique for quickly
quantifying disorder in high-frequency event series: the spec-
tral entropy is a measure of disorder applied to the power
spectrum of periods of time series data. The physiologically
motivated use of the spectral entropy is shown to distinguish
atrial fibrillation and flutter from other rhythms. For a given
set of parameters, we are able to determine from a disorder
map two threshold conditions �based on the level and vari-
ance of spectral entropy values� that enable the detection of
fibrillation in a variety of patients. We apply the algorithm to
the MIT-BIH atrial fibrillation database of 25 patients. When
the algorithm is set to identify abnormal rhythms within 6 s,
it agrees with 85.7% of the annotations of professional
rhythm assessors; for a response time of 30 s, this becomes
89.5%, and with 60 s, it is 90.3%. The algorithm provides a
rapid way to detect fibrillation, demonstrating usable re-
sponse times as low as 6 s and may complement other de-
tection techniques. There also exists the potential for our
spectral entropy and disorder map implementations to be
adapted for the rapid identification of disorder in other rhyth-
mic signals.
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