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Abstract

Phillip P.A. Staniczenko
23rd May, 2011 Clarendon Laboratory

Ecosystems are often made up of interactions between large numbers of
species. They are considered complex systems because the behaviour of the
system as a whole is not always obvious from the properties of the individual
parts. A complex system can be represented by a network: a set of intercon-
nected objects. In the case of ecological networks and food webs, the objects
are species and the connections are interactions between species. Many com-
plex systems are dynamic and exhibit intricate time series. Time series anal-
ysis has been developed to understand a wide range of natural phenomena.
This thesis deals with the structure, dynamics, and robustness of ecological
networks, the spatial dynamics of fluctuations in a social system, and the
analysis of cardiac time series. Biodiversity on Earth is decreasing largely
due to human-induced causes. My work looks at the effect of anthropogenic
change on ecological networks. In Chapter Two, I investigate predator adap-
tation on food-web robustness following species extinctions. I identify a
new theoretical category of species that may buffer ecosystems against en-
vironmental change. In Chapter Three, I study changes in parasitoid-host
(consumer-resource) interaction frequencies between complex and simple en-
vironments. I show that the feeding preferences of parasitoid species actively
change in response to habitat modification. Ecological networks are embed-
ded in spatially-heterogeneous landscapes. In Chapter Four, I assess the role
of geography on population fluctuations in an analogous social system. I
demonstrate that fluctuations in the number of venture capital firms regis-
tered in cities in the United States of America are consistent with spatial and
temporal contagion. Understanding how physiological signals vary through
time is of interest to medical practitioners. In Chapter Five, I present a
technique for quickly quantifying disorder in high frequency event series.
Applying the algorithm to patient cardiac time series provides a rapid way
to detect the onset of heart arrhythmia. Increasingly, answers to scientific
questions lie at the intersection of traditional disciplines. This thesis applies
techniques developed in physics and mathematics to problems in ecology and
medicine.
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“What we observe is not nature itself, but nature exposed to our methods of

questioning.”

Werner Heisenberg in Physics and Philosophy (1958)



Chapter 1

Introduction

Ecosystems are often made up of interactions between large numbers of

species. They are considered complex systems because the behaviour of the

system as a whole is not always obvious from the properties of the individ-

ual parts. A complex system can be represented by a network: a set of

interconnected objects. In the case of ecological networks, the objects are

species and the connections are interactions between species. Work on the

structure of complex systems and networks (Newman 2003) has drawn on

methods developed in condensed matter physics, such as statistical mechan-

ics, quantum mechanics and field theory (Albert & Barabási 2002). Many

complex systems are dynamic and exhibit intricate time series (Boccaletti et

al. 2006; Barrat et al. 2008). This thesis deals with the structure, dynamics,

and robustness of ecological systems (Chapters Two and Three), the spatial

dynamics of fluctuations in a social system (Chapter Four), and the analysis

of cardiac time series (Chapter Five).

In a network, objects are called nodes or vertices, and the connections

between objects are called links or edges. Properties of these abstract sys-

tems have been studied by mathematicians since the 1950s in the field of
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graph theory (Erdös & Rényi 1959; Bollobás 2001). An example of a real

network is a social one: humans are represented by nodes and are connected

to acquaintances by links. In 1967, Milgram published the findings of his

famous “six degrees of separation” letter forwarding experiment (Miligram

1967). He showed that the average (shortest) number of links between in-

dividuals was smaller than previously expected. This became known as the

“small-world” effect (Watts & Strogatz 1998).

Advances in the theory of networks have been driven by the availability

of data (Newman et al. 2006). Theory is developed to understand a wide

range of empirical systems. Examples of biological systems include metabolic

networks, protein-protein interaction networks, and neural networks (ibid).

Examples of technological systems include the internet, the world wide web,

and product supply-chains (ibid). Examples of social systems include friend-

ship networks, disease spread on human-contact networks, and networks of

inter-bank loans (ibid).

The structure of empirical networks often change thorough time (Doro-

govtsev & Mendes 2002). Work to date has focused on growing networks:

where the number of nodes and links increases through time. This is largely

due to lack of data on networks that are decreasing in size. Only recently

have contracting networks been considered (Saavedra et al. 2008).

Ecological networks comprise many complex interactions between species

(Pascual & Dunne 2006). Biodiversity on Earth is decreasing and ecological

networks are losing species, largely due to human-induced causes (Millennium

Ecosystem Assessment 2005). My work seeks to understand the effects of

anthropogenic change on the structure and dynamics of ecological networks.
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In Chapter Two, I investigate predator adaptation on food-web robustness

following species extinction. In Chapter Three, I study changes in parasitoid-

host (consumer-resource) interaction frequencies between complex and simple

environments. Ecological networks are embedded in spatially-heterogeneous

landscapes. In Chapter Four, I assess the role of geography on population

fluctuations in an analogous social system: the number of venture capital

firms registered in cities in the United States of America (US) between 1981

and 2003.

Time series analysis has been developed to investigate a wide range of nat-

ural phenomena (Kantz & Schreiber 2003). Understanding how physiological

signals vary through time is of interest to medical practitioners (Richman &

Moorman 2000). In particular, the study of electrocardiograms has lead to

significant improvements in patient care (Braunwald 1997).

In Chapter Five, I present a technique for quickly quantifying disorder in

high frequency event series (published, Staniczenko et al. 2009). The method

uses changes in frequency-domain entropy to identify periods of irregular

rhythm. I use this method to distinguish two forms of cardiac arrhythmia—

atrial fibrillation and atrial flutter—from normal sinus rhythm. Applying the

algorithm to patient data provides a rapid way to detect arrhythmia, demon-

strating usable response times as low as six seconds (with correct assessment

of 85.7% of professional beat-classifications).

Statistical approaches have required around two minutes to detect changes

in rhythm (Tateno & Glass 2000; Sarkar et al. 2008). By contrast, the

entropy-based method is applicable to short sections of data, enabling quicker

response times. Combination of these approaches is desirable in an automatic
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detector of arrhythmia. Such a detector would be clinically useful in mon-

itoring for relapse of fibrillation in patients and in assessing the efficacy of

anti-arrhythmic drugs (Israel 2004).

Theoretical ecology, unlike other natural sciences, has no widely accepted

first-principle laws such as gravity, conservation of mass, or inheritance. Dif-

ferent theories and models must be invoked to answer the questions posed

in population, community and conservation ecology. Nevertheless, ecological

theory has a unifying intention: as Ilkka Hanski (1999) writes, “Mathematical

models [. . . ] are constructed in the hope that they will clarify our thinking,

reveal unexpected and significant consequences of particular assumptions,

and lead to interesting new predictions that could be tested with observa-

tional and experimental studies.”

A central goal of ecological research is to understand the mechanisms

influencing the persistence of ecosystems. Studies of the complex interactions

between species (Darwin 1859; Hutchinson 1957) have played a significant

role in the development of ecology as a scientific discipline (Hardy 1924;

Elton 1927). The approach of population and community ecology (following

Elton 1927; MacArthur 1955) considers individual species as the fundamental

unit of study. Interactions between species can be formulated in terms of

ecological networks (Montoya et al. 2006). Networks may comprise species

and interaction presence-absence data (binary), or contain information on

species abundances and interaction strengths (weighted).

Natural ecosystems comprise a range of interactions. But research to date

typically distinguishes between three types of network (Ings et al. 2009): (i)

predator-prey food-webs; (ii) parasitoid-host webs; and (iii) mutualistic webs.
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Predator-prey and parasitoid-host webs describe antagonistic relationships

between species, while species in the mutualistic web benefit from interacting.

The impact of anthropogenic environmental change (e.g., Sala 2000) has

motivated studies of the stability and robustness of ecological networks. This

is because the communities of species described by ecological networks often

provide ecosystem services that are of great practical benefit to humankind

(Costanza et al. 1997).

Seminal work by Robert May (1972) used random matrix theory to assess

the stability of random assemblages of interacting species to perturbation. He

found that increasing interaction complexity led to reduced system stability.

This relationship questioned the observation that empirical data repeatedly

demonstrated the prevalence of complexity in nature (Polis 1991; Williams

& Martinez 2000). One possible explanation for this difference is May’s

assumption of random interactions: the structure of empirical networks was

subsequently shown to follow non-random distributions (Dunne et al. 2002a).

Structural food-web research has received renewed interest following a

series of highly critical reviews in the late 1980s and early 1990s (Paine

1988; Hall & Raffaelli 1993). This may be attributable to the collection of

improved empirical food-webs as well as an influx of new analytical methods

from other disciplines. Studies of biological, technological and social networks

have provided new ideas and new perspectives from which to study ecological

networks (Proulx et al. 2005).

Of the different types of ecological network, predator-prey food-webs have

received the most attention during the early development of the field (Pimm

1982; Cohen et al. 1993). The current “second-generation” empirical food
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webs (see Allesina & Pascual 2009 for a collection) have been thoroughly

studied with respect to their structural properties and theoretical robustness

to secondary extinctions (summarised in Pascual & Dunne 2006). One study

(Dunne et al. 2002b) found that robustness increases with connectance (a

structural measure of food-web complexity), in direct contrast to the finding

of May. Modelling secondary extinctions has informed structural traits that

may identify keystone species: typically understood as a species that has a

disproportionate effect on its environment relative to its biomass (introduced

in Paine 1969, review in Mills et al. 1993). The identification and study of

keystone species is important in conservation ecology (ibid).

Robustness studies to date have only considered static food-web struc-

tures (but see Kaiser-Bunbury et al. 2010). This is despite the widely held

view that there are many possible types of compensatory dynamics in ecosys-

tems that may alter food-web structure (e.g., Brown et al. 2001). Indeed,

in Jennifer Dunne’s study (Dunne et al. 2002b) of food-web robustness she

writes, “. . . our simple algorithm for generating secondary extinctions is lim-

ited, and may overestimate secondary extinctions since species can survive

by switching to less preferred prey.”

In Chapter Two, I present a model that introduces structural dynamics

into the framework of secondary-extinction robustness analysis (published,

Staniczenko et al. 2010a). In the model, trophic links may be rewired follow-

ing the loss of a predator species from the food web. Due to reduced competi-

tion, species loosing a predator become more available to other, biologically-

plausible, predators. I compare the increase in robustness conferred through

rewiring in 12 empirical food webs. Using the model, I identify a new theo-
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retical category of species—overlap species—which promote adaptive robust-

ness. These findings underline the importance of compensatory mechanisms

that may buffer ecosystems against environmental change, and highlight the

likely role of particular species that are expected to facilitate this buffering.

The introduction of structural dynamics represents a significant advance

in the theoretical treatment of food-web robustness. The method may be in-

corporated into other theoretical frameworks (e.g., population dynamics), ex-

tending the realism of community-level models. The identification of overlap

species raises important practical questions in conservation biology. Which

species in an ecosystem enable adaptation and hence additional robustness?

What mechanisms underlie this form of adaptation? And what is the rela-

tionship, perhaps phylogenetic, between these species? Thus, in complement

to keystone species, whose removal causes large cascading effects, we must

ask: which species provide ecosystem stability in the first place? In addition

to protecting keystone species, conservationists must preserve the diversity

of overlap species in order to maintain functional ecosystems.

Models that aim to describe the structure of food webs typically fall into

two broad categories (Stouffer 2010): (i) phenomenological models and (ii)

population-level models. Phenomenological models rely on heuristic rules to

determine how species select their prey and thus generate food-web structure

(Cohen & Newman 1985; Williams & Martinez 2000; Cattin et al. 2004).

Population-level models prescribe an ecologically-motivated generative mech-

anism and resulting interactions produce food-web structure (e.g., Loeuille

& Loreau 2005). Mechanistic models based on first principles are generally

preferred to phenomenological models due to their inherent predictive, rather
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than pattern-fitting, nature (Ings et al. 2009).

Recent work by Beckerman, Petchey & Warren (2006) used foraging the-

ory (MacArthur & Pianka 1966; Pulliam 1974; Stephens & Krebs 1986) as an

ecological basis to determine some emergent properties (e.g., connectance) of

food-web structure. This work was then extended to include species allome-

tries (body-size) to predict interactions observed in empirical predator-prey

food webs (Petchey et al. 2008; but see Allesina 2010). However, these mech-

anistic models are currently limited to size-structured, binary, food-webs.

It is well known that not all species and interactions are equally important

(Paine 1980; Benke & Wallace 1997). The prevalence of weak interactions

in nature (Berlow et al. 1999) has cast new light on the complexity-stability

debate (Polis 1998; McCann 2000). Several key studies (Paine 1992; McCann

et al. 1998) suggested that weak links tended to stabilise local community

dynamics. The advent of increasingly quantified webs (e.g., Müller et al.

1999) has enabled more rigorous testing of the role interaction strength plays

in determining food-web stability. It has been shown that the configuration

of weak and strong links, not just the presence of weak links, has implications

for ecosystem functionality (Bascompte et al. 2005, 2006).

Methods summarising the information contained in quantitative webs

(Bersier et al. 2002) has facilitated detailed studies of the effects of habitat

modification on species interaction patterns (Klein et al. 2006; Tylianakis

et al. 2007; Albrecht et al. 2007). Across these distinct studies, struc-

tural metrics describing parasitoid-host webs were observed to change with

similar pattern along increasing land-use gradients. However, the mecha-

nisms responsible for these structural changes are unknown. One study of
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host-parasite1 interactions suggested that observed topological patterns arise

from species abundance distributions (Vazquez et al. 2005, 2007).

In Chapter Three, I show that the feeding preferences of consumer species

can actively change in response to habitat modification (in preparation, Stan-

iczenko et al. 2010b). Parasitoid species focused on particular trophic inter-

actions within their existing set. Their distribution of interactions differed

significantly from what would be expected if density-dependent reallocation

is assumed. I present a model of consumer feeding reallocation that gener-

ates quantitative food webs in simplified environments and test the model

against empirical data. I show that consumer preference for resource species

can alter between environments, resulting in corresponding changes to the

structural properties of their community food webs. My findings suggest that

in environments where communities are more impacted by habitat modifi-

cation, interaction patterns will increasingly depart from density-dependent

resource selection.

The active reallocation model is able to generate quantitative interaction

frequencies in non-size-structured food webs. This represents a large step

forward in modelling realistic consumer feeding behaviour. Since parasitoids

are natural enemies of many crop pests (Hawkins 1994), knowledge of altered

interaction pattern in modified environments could be exploited to control

outbreaks of previously less abundant pests. Understanding the mechanisms

underlying species interactions subject to environmental change will help

with the planning of habitat restoration and with assessing its efficacy. Active

1Parasites are distinguished from parasitoids in that a parasitoid ultimately causes the
death of its host organism.
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reallocation is a significant and functionally important process that needs to

be taken into account when developing forecasts of the effects of human-

induced disturbances on community structure and composition.

I argue that active reallocation is consistent with differences in parasitoid

foraging behaviour between forested and unforested habitats (Laliberté &

Tylianakis 2010). This suggests that foraging behaviour is a strong can-

didate for the ecological mechanism causing structural differences between

quantitative webs. Not unsurprisingly, the environment in which a species

is located has direct influence on its foraging behaviour. This explains the

variable trophic breadths of parasitoid species observed in empirical data.

The traditional approach to population ecology assumes that individuals

in a (species) population share the same environment (Kingland 1985; McIn-

tosh 1985). However, populations are often non-homogenously distributed

throughout the spatial landscape (Turner 1989; Wiens 1997). Metapopula-

tion ecology provides an explicit treatment of space within its conceptual

framework (Hanski 1999).2 Hanski (ibid) describes metapopulation stud-

ies as “typically assum[ing] an environment consisting of discrete patches of

suitable habitat surrounded by uniformly unsuitable habitat.”

Metapopulation ecology is primarily concerned with the density of pop-

ulations within patches and the emigration and immigration of populations

between patches (Levin et al. 1993). Metapopulation theory, along with

population ecology in the wider sense, is often restricted by the large scale

of the study phenomena required to test model predictions (Hassell et al.

2There are two other approaches to large-scale spatial ecology: landscape ecology and
spatial dynamics in continuous space (Hanski 1999 pp3-4).
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1989). Lack of extensive field studies has hampered progress in refining

models dealing with fragmented landscapes. This is despite growing evi-

dence linking species extinction to habitat fragmentation (e.g., Pimm 1998).

Although large-scale population data is sparse, field studies have provided

some evidence in support of metapopulation dynamics. Notably: population

density is significantly affected by patch area and isolation (Turner 1989;

Wiens 1997) and migration and immigration (Krebs 1994).

Spatial synchrony refers to coincident changes in the time-varying char-

acteristics of geographically separated populations (see Liebhold et al. 2004

for a review). The concept of population synchrony is particularly relevant

to metapopulation systems because synchrony is directly related to the like-

lihood of global extinction (Heino et al. 1997). Synchrony is typically mea-

sured by correlation in abundance and many studies found that synchrony

declines as the distance separating populations increases (ibid). Due to dif-

ficulty collecting extensive spatiotemporal ecological data, metapopulation

and population dynamics studies have focused on spatial correlations of pop-

ulation density in fragmented landscapes. The dynamics of fluctuations in

species populations has received little or no attention.

Within metapopulation ecology (and population ecology more generally),

fluctuations in population have two important consequences: (i) positive

fluctuations can lead to local population outbreaks and (ii) negative fluctua-

tions can lead to local population extinctions. Studies relating heterogeneous

spatial landscapes to synchronous population extinctions have been almost

exclusively theoretical (Liebhold et al. 2004). A prototypical example is

the study by Earn et al. (2000) in which the authors used a simple spatial
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population model to assess the influence of “conservation corridors” on pop-

ulation synchronicity. In this and similar studies, the aim was to understand

the analytical relationship between mathematical parameters governing syn-

chronicity and fluctuations leading to local, and ultimately global, extinc-

tions. A systemic study of the spatial-temporal patterns of fluctuations has,

to my knowledge, yet to be studied.

In Chapter Four, I analyse the spatial and temporal pattern of fluctua-

tions in the number of venture capital firms (VCFs) registered in US cities

(in preparation, Staniczenko et al. 2010c). Data comprise the number of reg-

istered VCFs in 509 cities (VCF populations) sampled yearly over the period

1981 to 2003. I argue that VCF dynamics, in addition to being of interest to

the social sciences, has implications for spatial ecology where suitable data

are less available for analysis. In the metapopulation-analogous framework

of cities (patches) non-homogenously distributed through US states, I show

that fluctuations in VCF populations are consistent with spatial contagion.

That is, fluctuations in a city are more likely to occur if neighbouring cities

demonstrated fluctuations during the preceding year.

To describe the observed VCF fluctuation dynamics, I propose a model

that posits three phenomenological features: (i) cities strongly induce self-

fluctuations; (ii) the (fluctuation) influence of cities on proximate cities fol-

lows an exponentially-decaying function; and (iii) the influence of proximate

cities on the fluctuation behaviour of a city is cumulative. The model pro-

vides a good fit to the empirical data compared to two null models. One null

model assumes fluctuations are independent of city identity and geographi-

cal location; the other null model incorporates the empirical observation that

12



some cities experience greater numbers of fluctuations than others.

Although the study in Chapter Four involves populations of VCFs, the

findings have direct relevance to problems in spatial ecology. Primarily: are

fluctuations in local species abundance spatially contagious? A more thor-

ough investigation of population synchronicity, beyond simple density effects,

may lead to more effective methods to control or eradicate invasive species.

Furthermore, the simple model of spatial contagion can be used to improve

our understanding of the effects of habitat fragmentation—patches of land

joined by conservation corridors—on metapopulation persistence.

Ecological theory, in turn, may provide candidate mechanisms for the

phenomena observed in the VCF data. Four areas of the population syn-

chrony literature motivated my explanation of VCF fluctuation dynamics:

(i) observed patterns in the dispersal of species populations; (ii) impact of

habitat quality on population density; (iii) synchronicity of population den-

sity with exogenous factors; and (iv) focal species’ interactions with other

species populations demonstrating synchrony. Indeed, the social sciences

have drawn greatly on ecology: not least in organisational ecology. Insights

from ecology and biology have been combined with economics and sociology

to understand the conditions under which organisations emerge, grow and

die (Hannan & Freeman 1977, 1989).

The theme of this Introduction has been the interplay of theory and data.

From this interplay emerge phenomenological and mechanistic descriptions of

the natural world. The success of ecology, as with all the natural sciences, re-

lies on the work of both experimentalists and theoreticians. As we experience

rapid environmental change, the questions asked in ecology are becoming in-
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creasingly important. The methods used to find answers and solutions may

improve, but the fundamental goal remains the same: as Athelstan Spilhaus

wrote, “[Ecological] models as they develop will not only provide understand-

ing, but also when we build a highway, dam, city or pipeline—predict the

consequences!”

Figure 1.1: Our New Age by Athelstan Spilhaus, circa 1950.
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Chapter 2

Structural dynamics and

robustness of food webs

Food web structure plays an important role when determining robustness

to cascading secondary extinctions. However, existing food web models do

not take into account likely changes in trophic interactions (“rewiring”) fol-

lowing species loss. We investigated structural dynamics in 12 empirically

documented food webs by simulating primary species loss using three realistic

removal criteria, and measured robustness in terms of subsequent secondary

extinctions. In our model, novel trophic interactions can be established be-

tween predators and food items not previously consumed following the loss

of competing predator species. By considering the increase in robustness

conferred through rewiring, we identify a new category of species—overlap

species—which promote robustness as shown by comparing simulations in-

corporating structural dynamics to those with static topologies. The fraction

of overlap species in a food web is highly correlated with this increase in ro-

bustness; whereas species richness and connectance are uncorrelated with in-

creased robustness. Our findings underline the importance of compensatory
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mechanisms that may buffer ecosystems against environmental change, and

highlight the likely role of particular species that are expected to facilitate

this buffering.

2.1 Introduction

Human-induced changes to the global environment driven by climate change,

pollution, and habitat destruction are expected to cause widespread extinc-

tions of populations and species globally (e.g., Brook et al. 2003). The

robustness of ecological communities to such changes has been the subject

of numerous empirical and theoretical studies (e.g., Shin et al. 2004; Dob-

son et al. 2006; Saavedra et al. 2008), revealing that the loss of individual

species can lead to cascading secondary extinctions (Ebenman et al. 2004).

A particular focus has been on food webs (networks representing biomass

flow through ecosystems), and the relationship between their structure and

robustness to species loss (Dunne et al. 2002, 2004; Dunne & Williams 2009).

Enhanced ecological realism has been incorporated into food web analyses by

employing plausible extinction sequences (Srinivasan et al. 2007) and by in-

corporating the effect of human-mediated disturbances (Coll et al. 2008).

However, existing models remain inherently static in their description of

food web response to species loss. This reflects available empirical data

which mostly represent food webs either as a snapshot in time (Thomp-

son & Townsend 2005) or aggregated over time (Martinez 1991).

Recent work has sought to analyse the interplay of structure and dy-

namics in food webs (Pascual & Dunne 2006). One approach has been

the combination of food-web topologies with bioenergetic and population
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dynamic models that represent predator-prey interactions by a system of

nonlinear differential equations. Such investigations have, for example, con-

sidered the effects of single species removal in reconstructed “fossil” food

webs (Roopnarine et al. 2007) and synthetic topologies generated by the

niche model (Berlow et al. 2009). Some studies have begun to incorpo-

rate adaptive foraging (Brose et al. 2003; Kondoh 2003, 2006; Garcia-

Domingo & Saldaña 2007), by which consumer species maximize the energy

gain per unit foraging effort by behavioural shifts in prey selection. Foraging

theory has also been used to predict species interactions and resulting food

web structure (Petchey et al. 2008). The consequences of species loss have

also been modelled in food webs where predators preferentially consume com-

petitively dominant prey species and thus prevent the competitive exclusion

of many other subordinate competitors (Brose et al. 2005). Nevertheless,

in each of these approaches the underlying trophic structure remains essen-

tially static through time. A general framework for considering the structural

dynamics of food webs would increase the realism of theoretical models in

accordance with the observation that species are able to adjust their feeding

behaviour in response to changing environments.

The diet of a consumer is to a large extent constrained by its phyloge-

netic history, morphology, and body size (Cousins 1985; Ives & Godfray 2006;

Bersier & Kehrli 2008). However, individuals of many species will respond to

altered biotic and abiotic conditions by incorporating into their diets items

not previously consumed. Such flexibility is widely expected given that the

fundamental niche (Hutchinson 1957) of most species is likely to be much

wider than the realized niche that will be measured empirically: where com-
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petition for prey items is relaxed or removed, “novel” resource species will

be exploited. For example, zooplankton alter patterns of resource intake

depending on the abundance and variety of prey (Gentleman et al. 2003);

food selection by an omnivorous thrip (Frankliniella occidentalis) varies de-

pending on host-plant quality and prey availability (Agrawal et al. 1999);

and Chaoborus larvae show reduced prey selectivity when prey abundance

is low and larvae are hungry (Pastorok 1980). Thus, the high abundance

of a common prey may mask the ability of predators to consume other, less

abundant prey which will become a viable source of nutrition if typical prey

resources are depleted or lost (Pimm 1991).

Motivated by such examples of species’ ability to alter their feeding pat-

terns in response to the abundance of actual and potential prey species, we ex-

plore the consequences of incorporating predator-prey “rewiring” (predators

switching to food items not previously consumed) into simulation-based anal-

yses of structural food-web robustness. We extend static models of food webs

by introducing trophic interactions that can respond to the loss of species

from an ecosystem—structural dynamics—and quantify the resulting robust-

ness to secondary extinctions. Our results allow the identification of a new

category of species, which we call “overlap species”, which promote robust-

ness as shown by comparing simulations incorporating structural dynamics

to those with static topologies. Following removal of a competing preda-

tor in our model, overlap species indicate other predators that can establish

novel trophic interactions (i.e., “rewire”) to the removed predator’s former

prey. Our results suggest the importance of compensatory mechanisms—

and particular species—that may enhance food web robustness in the face of

28



environmental change.

2.2 Materials and Methods

We analysed 12 of the best-characterized food webs available, some of which

have been previously studied for their robustness to simulated primary species

loss. The focal food webs represent a wide range of species numbers, linkage

densities, taxa, habitat types, and methodologies (Table 2.1; Dunne et al.

2002; references in Allesina & Pascual 2009). We studied trophic species

versions of the 12 food webs. The use of trophic species (hereafter referred

to as species), that is, groups of taxa that share the same set of predators

and prey (Briand & Cohen 1984), is a widely accepted convention in struc-

tural food-web studies that reduces methodological biases related to uneven

resolution of taxa within and among food webs (Williams & Martinez 2000).

For each food web, we simulated species loss by sequentially removing

either (1) randomly chosen species; (2) the least connected species preferen-

tially; or (3) species at high trophic level preferentially; for each criterion,

1000 deletion sequences were simulated for each food web. For criterion (2),

removal of the least connected species, total trophic connections (“degree”)

was calculated for each species for both predator and prey links; the proba-

bility of a species, i, being chosen for removal was

pi =
(ki)

−1

∑

(kj)−1
, (2.1)

where ki is the degree of species i and the summation runs over all species in

the food web. For criterion (3), the probability of a species, i, being chosen
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No rewiringa With rewiringa

Food web Sb Cc P d Rand Conn TL Rand Conn TL PIRe

Benguela 29 0.313 0.41 0.724 0.793 0.828 0.793 0.862 0.897 0.32
Bridge Brook Lake 25 0.171 0.52 0.800 0.720 0.880 0.880 0.800 0.920 0.33
Chesapeake Bay 31 0.071 0.39 0.645 0.742 0.774 0.710 0.774 0.871 0.23
Coachella Valley 29 0.312 0.31 0.759 0.690 0.897 0.793 0.724 0.931 0.16
Little Rock Lake 92 0.118 0.61 0.750 0.685 0.859 0.826 0.783 0.935 0.35
Reef 50 0.272 0.26 0.760 0.740 0.900 0.780 0.800 0.960 0.23
Shelf 79 0.277 0.92 0.886 0.899 0.937 0.962 0.949 0.975 0.59
Skipwith Pond 25 0.315 0.88 0.880 0.880 0.920 0.960 0.920 0.960 0.50
St. Marks Seagrass 48 0.096 0.67 0.750 0.813 0.896 0.833 0.875 0.958 0.38
St. Martin Island 42 0.116 0.69 0.738 0.762 0.857 0.833 0.833 0.952 0.41
Ythan Estuary ’91 82 0.059 0.48 0.659 0.793 0.768 0.707 0.854 0.866 0.27
Ythan Estuary ’96 123 0.139 0.50 0.650 0.821 0.764 0.691 0.870 0.854 0.23

Table 2.1: Structural properties of food webs and simulation results.

aThe fraction of primary removals required until no species remain; three species removal criteria: removal of (1) randomly chosen
species; (2) the least connected species preferentially; and (3) species at high trophic level preferentially; for each criterion, 1000 deletion
sequences are simulated for each food web.

bS, trophic species.
cC, connectance, L/S2; L, trophic links.
dP , initial fraction of overlap species.
eProportional change in robustness: (Rr − R0)/(1 − R0); where Rr is the robustness including rewiring, and R0 is the robustness

excluding rewiring; robustness to secondary extinctions are averaged over the three removal criteria; values > 0 constitute a proportional
increase in robustness.
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for removal was

pi =
TLi

∑

TLj
, (2.2)

where TLi is the trophic level of species i and the summation runs over

all species present in the food web. We use the longest-chain definition of

trophic level, which is calculated as one plus the longest trophic chain from

the consumer to a basal species, as this gives the greatest scope for rewiring

(given our constraint on trophic level feeding; see below). Our qualitative

results are robust to other definitions of trophic level including the shortest-

chain, prey-averaged (Levine 1980), and short-weighted algorithms (Williams

& Martinez 2004) (data not shown). Criteria (2) and (3) reflect the increased

vulnerability of specialists and species at higher trophic levels, respectively, to

environmental perturbations such as habitat fragmentation (Raffaelli 2004).

In food webs with only one or two basal species and where one of those basal

species is classified as detritus, we set the detritus “species” as the last to be

removed in the extinction sequence (Fath et al. 2007).

Following the removal of a species from a food web, previous studies (e.g.,

Dunne et al. 2002) remove all trophic links associated with that species. In

our predator-prey rewiring model, some of the removed species’ prey links

may be rewired to new predators if biologically plausible. This is motivated

by the likelihood that a species losing a predator species becomes more avail-

able to other predator species, for example, because of reduced competition.

The plausible set of new predators for a given species is determined by the

rewiring graph (Figure 2.1a–c). For each food web, we first obtained the
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Figure 2.1: The predator-prey rewiring model uses a rewiring graph which
indicates biologically plausible trophic rewirings and is derived from a food
web. Numbered nodes represent species. Obtaining the rewiring graph. (a)
Food web: a directed link represents a trophic interaction, e.g., 1 → 4
indicates that species 4 consumes species 1. (b) Predator-overlap graph:
species are joined by an undirected link if they share a common predator.
(c) Rewiring graph: a directed link, e.g., 2 → 3, indicates that, in addition
to shared predators, species 2 has at least one predator that does not prey
on species 3, and those predators are at higher trophic level than species 3.
Defining overlap species. Species 1 and 2 are defined as overlap species as
they have directed links pointing to other species in the rewiring graph.
Predator-prey rewiring model. (d) Consider the removal of species 4 from
the food web: the prey link of the removed species, 1 → 4, is considered for
rewiring; we look for directed neighbours in the rewiring graph and identify
species 2—we select at random a predator of species 2 that does not prey
on species 1 and is at a higher trophic level. (e) Species 6 is selected as an
appropriate potential predator and a trophic rewiring, 1 → 6, takes place.
(f) The process of rewiring can dynamically alter the structure of the rewiring
graph: the new link 1 → 3 is formed, and presents additional possibilities for
rewiring following further species removals.
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predator-overlap graph (also referred to as the resource graph) (Cohen 1978).

In the predator-overlap graph, species are joined by an undirected link if they

share a common predator. The rewiring graph is obtained from the predator-

overlap graph and contains directed links. A link i → j indicates that, in

addition to the shared predators, species i has at least one predator that

does not prey on species j, and those predators are at higher trophic level

than species j. In the predator-prey rewiring model, following the removal of

a species, each of the removed species’ prey links is considered for rewiring

(Figure 2.1d,e). For the remaining prey species, we obtain a set of poten-

tial predators from the directed nearest neighbours in the rewiring graph. A

new predator is selected randomly from the set of potential predators and

the trophic link is rewired accordingly; if no potential predators are avail-

able then the trophic link is removed. Rewiring can dynamically alter the

structure of the rewiring graph, thereby presenting additional possibilities

for rewiring following further species removals (Figure 2.1f); this process en-

sures that the most plausible rewirings are implemented first. Once each

of the removed species’ prey links has been considered for rewiring, another

species is selected for removal and the process repeats. Because of its basis in

the predator-overlap graph, the rewiring graph indicates the most plausible

rewirings. There are a number of interpretations for these “new” trophic

interactions: (1) they are unobserved in the empirical data yet are still bi-

ologically plausible; (2) they are unobserved in the empirical data as they

are not biologically plausible; (3) they are observable yet are not sufficiently

frequent to have been included in the documented food web; (4) they are

observable but have been missed in the collation of the food web because of
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practical limitations (Martinez et al. 1999). Because modern food webs are

sampled in the field extensively over time and space, it is likely that the links

included in the food webs already reflect many of the observable, short-term,

predator-prey switches. However, these data cannot account for trophic links

that may emerge when the food web is subject to severe perturbations: we

simulate species removal until no species remain. This also makes it difficult

to determine, without detailed individual examination, whether a suggested

trophic rewiring that is unobserved in the empirical data should be classified

as biologically plausible, category (1), or not, category (2). Our approach to

rewiring may be considered conservative since we required that new predators

are at higher trophic level than the prey species, as observed empirically for

free-living prey (Woodward et al. 2005). Having obtained the rewiring graph

for a food web, we define overlap species systematically. An overlap species

is a species in the rewiring graph that has at least one directed link point-

ing from it to another species in the rewiring graph: it has out-degree > 0

(Figure 2.1c). However, we do not denote species involved in trophic looping

(where a trophic chain closes on itself, and excluding cannibalism) as overlap

species unless there are distinct top predators in the food web. This is due to

the way in which we have designated all species involved in trophic looping

as being at the highest, chain, trophic level of the food web, whilst forbidding

rewiring to take place between species at the same, nominal, trophic level.

We stress that this reflects an algorithmic choice of the model and does not

constitute a comment on any underlying ecological process.

We examined the impact of species loss on food web stability by con-

sidering the number of potential secondary extinctions that may result. A
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secondary extinction occurs when a non-basal species loses all of its prey

items, and also when a cannibalistic species loses all of its prey items except

itself. Following previous studies (Dunne et al. 2002), “robustness” of food

webs to species loss was quantified as the fraction of species that had to be

removed for all species to go extinct. The maximum possible robustness is 1

and the minimum is 1/S, where S, the species richness, is the initial number

of (trophic) species in the food web. Values for the robustness were obtained

both with and without predator-prey rewiring. To compare the effect of

rewiring between food webs, we calculate the proportional change in robust-

ness: (Rr − R0)/(1 − R0); where Rr is the robustness including rewiring,

and R0 is the robustness excluding rewiring. Although this expression allows

for negative values, rewiring of the kind represented here is highly unlikely

to reduce the robustness of the food web. We refer to positive values as a

proportional increase in robustness. The maximum possible proportional in-

crease in robustness is 1 and the minimum is 0. We averaged the proportional

increase in robustness for the three removal criteria in order to have one rep-

resentative value for each food web. We examined correlations between the

proportional increase in robustness and three food-web measures: species

richness (S); connectance (C), the fraction of all possible trophic links, L,

including cannibalism that are realised (L/S2); and the initial fraction of

overlap species in the food web (P ).

2.3 Results

The 12 food webs range in size from 25 to 123 trophic species (S), their con-

nectance (C) from 0.059 to 0.315, and the initial fraction of overlap species
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(P ) from 0.26 to 0.92 (Table 2.1). When species were systematically removed

from food webs in our simulations, potential secondary extinctions varied

both among webs and among types of removal sequences (Figure 2.2). All

12 food webs were most robust (in terms of the number of primary removals

required for complete food-web collapse with the inclusion of rewiring) when

species were preferentially removed at high trophic level. Six of the food

webs were least robust to random species removal, five food webs were least

robust to preferentially removing the least connected species, and one food

web had the same robustness value for both random and least connected

removal. For each of the three removal criteria simulated for each food web,

the shape of the secondary extinctions curve appeared qualitatively similar

for simulations including and excluding rewiring. However, the magnitude

of robustness differs depending on whether rewiring is included or not: for

a given removal criterion, robustness was consistently higher in simulations

that allow predator-prey rewiring. Even with conservative rewiring, we see

absolute increases in robustness of up to 0.1 (Little Rock Lake and St. Mar-

tin Island). This implies that simulations with rewiring require 10% more

primary species removals to cause complete food web collapse, equivalent to

9 and 4 species for Little Rock Lake and St. Martin Island, respectively.

To compare the effect of rewiring between food webs, we used the propor-

tional increase in robustness averaged over the three removal criteria (with

each removal criterion simulated 1000 times). The criteria-averaged propor-

tional increase in robustness ranged from 0.16 to 0.59. For the 12 food webs,

we found no significant correlation between the proportional increase in ro-

bustness and species richness (correlation coefficient, r = 0.00, d.f. = 11, n.s.),
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Figure 2.2: Secondary extinction sequences resulting from primary species
loss in 12 food webs ordered by increasing initial fraction of overlap species.
For each food web sub-figure, S is the number of trophic species, C is the
connectance, and P is the initial fraction of overlap species in the food web.
Each symbol represents a sequential primary species removal according to
the following criteria: random with no rewiring (open circle); random with
rewiring (filled circle); least connected preferentially with no rewiring (open
triangle); least connected preferentially with rewiring (filled triangle); high
trophic level preferentially (open square); high trophic level preferentially
with rewiring (filled square). Each sequence is an average of 1000 simula-
tions; 95% error bars fall within the size of the symbols and are not shown.
Simulations end at the dashed diagonal line, where primary removals plus
secondary removals equals S, and the web disappears. Stacked symbols in
each sub-figure indicate the removal criteria ordering for which the food web
is least robust (top symbol) to most robust (bottom symbol). Values of
food-web robustness to the various removal criteria are given in Table 2.1.
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Figure 2.3: The proportional increase in robustness as a function of the
initial fraction of overlap species in 12 food webs; where S is the num-
ber of trophic species (see Table 2.1). Correlation coefficient, r = 0.94,
d.f. = 11, p < 0.001. The proportional increase in robustness is defined
as (Rr − R0)/(1 − R0); where Rr is the robustness including rewiring, and
R0 is the robustness excluding rewiring; robustness to secondary extinctions
are averaged over three primary species removal criteria: random, least con-
nected preferentially, and high trophic level preferentially.
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or connectance (r = 0.18, d.f. = 11, n.s.). However, we found a significant,

strong positive correlation between the proportional increase in robustness

and the initial fraction of overlap species in the food web (r = 0.94, d.f. = 11,

p < 0.001; Figure 2.3). We found that the initial fraction of overlap species is

approximately conserved in our removal simulations until there are very few

species remaining (data not shown). Thus, the fraction of overlap species in

general, not only the initial fraction, is a good indicator of the proportional

increase in robustness that can be expected in food webs when considering

structural dynamics compared to static topologies: the larger the fraction

of overlap species, the higher the proportional increase in robustness. This

positive correlation between the proportional increase in robustness and the

initial fraction of overlap species is observed even when each removal cri-

terion is considered individually: random, r = 0.91, d.f. = 11, p < 0.001;

least connected, r = 0.78, d.f. = 11, p = 0.003; high trophic level, r = 0.49,

d.f. = 11, n.s. Some highly-connected species, such as small pelagic fish and

invertebrates, are the particular target of human exploitation, and so results

for removing the most connected species preferentially are also of interest

(Dunne et al. 2004). Including this scenario in the criteria-averaged pro-

portional increase in robustness does not alter our results substantially: the

correlation with the initial fraction of overlap species is r = 0.90, d.f. = 11,

p < 0.001; and for the removal criterion individually, r = 0.79, d.f. = 11,

p = 0.002.

In Figure 2.2, the cumulative secondary extinction plots for the 12 food

webs are ordered by increasing initial fraction of overlap species, P . There

is no significant correlation between P and S (r = 0.13, d.f. = 11, n.s.), or
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P and C (r = 0.04, d.f. = 11, n.s.). For example, the Coachella and Skipwith

food webs have very similar values for S and C (S = 29, 25; C = 0.31, 0.32; re-

spectively), but have very different values for P (P = 0.31, 0.88, respectively);

this leads to very different values for the proportional increase in robustness

(PIR = 0.16, 0.5, respectively), despite the food webs having similar ‘global’

structural characteristics. This suggests that the explicit topology of a food

web is important to determining its structural dynamics and robustness.

2.4 Discussion

Investigations of the structural robustness of empirical food webs increasingly

suggest that topological details greatly influence their simulated vulnerabil-

ity to secondary extinctions. Initial studies found that food webs are more

robust to random primary removal of species than to selective removal of

species with the most trophic links (Dunne et al. 2002). Food webs were

consistently more robust to our three ecologically plausible removal criteria

compared to removal of the most connected species preferentially (both or-

dered and probabilistic, data not shown), in agreement with a previous study

(Srinivasan et al. 2007). Attempts to find maximally destructive removal se-

quences suggest that the position of a species in the food web, rather than

its number of connections per se, is the main determinant of its impact on

extinction cascades (Allesina & Pascual 2009). Various structural indices

have been considered in attempts to identify functionally important species

in ecological networks (Jordàn et al. 2008). One such measure, the trophic

overlap, uses the overlap of weighted trophic interaction data to quantify

the uniqueness of species’ interaction patterns (Jordàn et al. 2009). How
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these structural indices relate to properties of the overlap graph and overlap

species merits further investigation.

As acknowledged in earlier topological studies (Dunne et al. 2002), failure

to include a mechanism for predator-prey rewiring in simulations may result

in overestimates of the number of secondary extinctions following the removal

of individual species. We show that including rewiring in the topological ap-

proach consistently increases the robustness of food webs to primary species

removal. This finding is in many respects unsurprising: any model that re-

duces the loss of trophic links would be expected to increase the persistence

of the food web. However, how this additional robustness, generated by the

dynamic adaptation of trophic interactions, varies systematically with dif-

ferent properties of the food web is not obvious a priori. The proportional

increase in robustness was uncorrelated with the traditional food web met-

rics, species richness (S) and connectance (C), and was instead most highly

correlated with the initial fraction of overlap species (P ). This result was

robust to alternative definitions of trophic level and to non-random meth-

ods for selecting a new predator from the set of available potential predators

(data not shown). Within our predator-prey rewiring model, overlap species

are systematically defined: they are species in a food web’s rewiring graph

that have out-degree > 0 (see Figure 2.1). This definition means that overlap

species indicate the presence of potential predators in the food web. There

is no reason to suggest that overlap species should be such a good indica-

tor of the proportional increase in robustness when advancing from static to

dynamic food-web topologies. Knowledge of the initial fraction of overlap

species in a food web is insufficient for quantifying the precise number of
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potential predators, nor the (maximum) number of trophic links that may

be retained due to rewiring; P also gives no indication of where those links

are located within the topological and trophic structure of the food web,

details especially pertinent given the cascading nature of secondary extinc-

tions. Furthermore, we find that another property derived from the overlap

graph—the connectance of the overlap graph—has no significant correlation

with the proportional increase in robustness (r = 0.34, d.f. = 11, n.s.; data

not shown). Thus, the fraction of overlap species appears to encapsulate, in

a very succinct way, the relevant structural features that ultimately influence

the proportional increase in robustness of empirical food webs.

So, how are we to understand overlap species? The introduction of struc-

tural dynamics to topological models of food web robustness highlights the

role of compensatory mechanisms in reducing secondary species extinctions

following environmental perturbations. Our identification of overlap species

represents an intriguing avenue for exploring how those compensatory mech-

anisms are related to the properties of individual species and the composite

roles they play within ecosystems. Understanding interaction patterns from

a biological perspective often requires a combination of phylogenetic infor-

mation and information on species’ ecological traits (Ives & Godfray 2006).

Increasingly detailed and comprehensive food-web data is becoming available

(Jacob 2005). These data make it feasible to compare species characteristics

(such as body-size, taxonomic identity, and geographical range) and commu-

nity and ecosystem characteristics (such as biomass and abundance) between

overlap and non-overlap species. Such additional information may also be

incorporated into decisions regarding the plausibility of trophic rewirings.
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Phylogenetically related species tend to have similar biological characteris-

tics (Freckleton et al. 2002), and a phylogenetic approach has been used to

investigate constraints on trophic structure (Bersier & Kehrli 2008), patterns

of consumer-resource association (Ives & Godfray 2006), and coextinctions

in mutualistic networks (Rezende et al. 2007). A phylogenetic consideration

of overlap species would provide additional information on the relationship

between species’ characteristics and structural dynamics. Furthermore, ag-

gregation into trophic species is likely to underestimate the number of “real”

overlap species in a food web. These will be distributed non-randomly in

the food web, since trophic species contain more real species at lower trophic

levels (Williams & Martinez 2000). This will be an important consideration

for the identification of overlap species in the field.

In our predator-prey rewiring model, trophic adaptation (rewiring) re-

sults from changes in prey abundance brought about by species removal.

Three other factors can directly alter diet compositions and feeding rates:

changes in “habitat factors” such as temperature, water clarity, and soil

acidity; changes in predator feeding rates and search tactics; and changes

in predator abundance and competition. In our current model, if a trophic

rewiring is possible then it is established, but in reality competition among

predators for a prey species may prevent some rewirings from being realised.

This could be incorporated into the model by prescribing a probability for

the rewiring. Greater competition between predators would imply a smaller

probability of rewiring, and the overall effect would be a reduction in food-

web robustness relative to that observed in the current model.

Extinctions resulting from the loss of prey species represent the most pre-
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dictable subset of secondary losses. Our structural approach may be consid-

ered a baseline that corresponds to the best-case scenario in which the min-

imum impact to the food web is taken into account. Although the predator-

prey rewiring model improves the evaluation of secondary extinctions, our

framework still underestimates the potential for cascading extinctions due

to strong non-trophic and indirect effects (Strauss 1991). In particular, the

robustness of food webs to preferentially removing species at high trophic

level may be altered significantly if the regulatory effects of top predators

are taken into account. Another important source of additional secondary

extinctions will be related to the bioenergetic or population dynamics of

species. Other forms of trophic adaptation have been shown to cause an in-

crease in food web persistence and stability. A population dynamic model on

static food-web topologies demonstrates that foraging adaptation may shift

the complexity-stability relationship of food webs from negative to positive

(Brose et al. 2003; Kondoh 2003, 2006; but see Garcia-Domingo & Saldaña

2007). Despite much success on small, illustrative, food webs, the analysis

of removal effects using nonlinear differential equations remains challenging

for large ecological networks, requiring parameterisation of species interac-

tions with values that are often empirically unavailable (but see Borrvall &

Ebenman 2006; Brose et al. 2005). Nevertheless, there exists the prospect

of combining such bioenergetic and population dynamic models with a dy-

namic structure of trophic interactions. In a model of paleocommunity re-

sponse to species extinction, it was found that if consumers are permitted to

compensate for the loss of trophic resources by increasing the intensities of

their remaining biotic interactions, top-down secondary extinctions emerge
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(Roopnarine 2006). Whether the effect of topological predator-prey rewiring,

which may mitigate the increase in intensity described above, would reduce

top-down secondary extinctions has not been considered. This is an exam-

ple where the combination of population and structural dynamics would be

necessary to assess fully the impact of species removal from a food web.

We have considered the implications of structural dynamics on the robust-

ness of empirical food webs. It would be instructive to apply the predator-

prey rewiring model to synthetic food webs generated by, for example, the

niche model. This would allow a comprehensive analysis of how structural

dynamics affect robustness as food web size and connectance is varied. Mod-

els that allow the contiguity of prey consumption to be varied (Williams &

Martinez 2008) provide a way of investigating the relationship between feed-

ing intervality and the ability of food webs to rewire. Such a study would also

be relevant to the analogous issue of nestedness and robustness in mutualistic

networks (Bascompte & Jordano 2007).

This study uses binary food webs that indicate the presence of a trophic

interaction but provide no information on the frequency of the interaction

or the rate of biomass flow through the interaction. The increasing avail-

ability of quantitative, weighted, trophic interaction data presents an op-

portunity for improving the realism of food-web robustness studies. Com-

pared to binary food webs, quantitative food webs more accurately describe

the structure and strength of trophic interactions and hence better inform

the sensitivity of species to environmental perturbations (Ings et al. 2009).

Future models should incorporate weighted information when determining

the rewiring of trophic interactions and when simulating the magnitude of
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species loss.

In conclusion, our study underlines the importance of compensatory mech-

anisms that may buffer ecosystems against perturbations, and highlights par-

ticular species that are expected to facilitate those mechanisms. The consid-

eration of structural dynamics also enhances our understanding of the basic

robustness provided by food-web topologies. Differences in what could be

termed “structural plasticity” between empirical food webs, and the role of

overlap species in conferring structural robustness, has potential implications

for ecosystem conservation and management. Finally, the general method

for implementing structural dynamics that we have presented is amenable

to other approaches that seek to employ realistic food web structure and

dynamics.
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Chapter 3

Active reallocation of food-web

interactions under

environmental change

Human-induced habitat modification is the primary driver of worldwide changes

in the diversity and composition of species (Millennium Ecosystem Assess-

ment 2005). However, it is less clear how environmental change affects the

patterns of interactions among species (Tylianakis et al. 2008). Although

the structure of ecological communities (Memmott et al. 1994; Müller et al.

1999) is known to vary across gradients of habitat modification (Tscharntke et

al. 1998; Klein et al. 2006; Tylianakis et al. 2007; Albrecht et al. 2007), the

processes responsible for these changes are unknown. Here we show that vari-

ability in consumer functional response among habitats lead to interaction

distributions that cannot be explained purely on the basis of resource avail-

ability. We apply a simple model of consumer feeding to data on insect hosts

and their natural enemies from four regions. The model accurately recreates

observed changes in quantitative food-web structure following habitat mod-

ification. The model highlights two processes responsible for changes to the
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distribution of interactions: altered selection within a consumer’s existing re-

source set, and the initiation of novel trophic interactions. In environments

where communities are more impacted by habitat modification, interaction

patterns increasingly depart from density-dependent resource selection. Our

findings are consistent with improved consumer foraging efficiency in simpli-

fied environments, where increased resource selectivity can lead to greater

than expected specialisation, while increased resource encounters can also

lead to greater than expected generalisation. Understanding how variation

in trophic specialisation is generated will improve forecasts of the community-

level impact of environmental change and its implications for ecosystem func-

tioning.

3.1 Introduction

A central goal in ecology is to explain and predict the structure of species

interaction networks (Memmott 1999; Lewis et al. 2002; Montoya et al.

2006). Environmental change can lead to the disappearance of species from

ecosystems and cause alterations to the abundance of those species that per-

sist (Foley et al. 2005). Consequently, understanding how anthropogenic

changes affect the dynamics and function of ecological networks is an im-

portant theoretical challenge, but is also likely to have significant practical

consequences since humans rely on the ecosystem services associated with

species interactions such as pollination, seed dispersal, and biological con-

trol (Costanza et al. 1997; Losey & Vaughan 2006). Theoretical studies

exploring changes in community composition have typically assumed that

food-web topology remains unchanged even as species are removed, although
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recent work has proposed mechanisms that allow for structural adaptation

(Kondoh 2003; Kaiser-Bunbury et al. 2010; Staniczenko et al. 2010). Ad-

vances in field methods that quantify functionally-important variations in the

magnitude or frequency of interactions (Müller et al. 1999) have generated

highly-detailed food webs that not only provide a more robust description of

static community structure (Banasek-Richter et al. 2004), but also enable

more accurate insights into dynamic and indirect interactions among species

(Morris et al. 2004; Laliberté & Tylianakis 2010). This increasing availabil-

ity of rich, community-level, data requires a parallel advance in theoretical

models to explain the mechanisms underpinning quantitative, rather than

binary (interaction presence-absence), food webs.

Diets of species are largely constrained by their phylogenetic history and

morphology (Ives & Godfray 2006). However, the composition of a con-

sumer’s diet can alter depending on resource availability and quality in dif-

ferent environments (Stang et al. 2009). A useful initial null hypothesis

that avoids assuming specific behavioural processes is that interactions are

primarily determined by resource species density (Vázquez et al. 2007). In

the simplest case, we assume a linear response between consumer interac-

tion frequency and resource density, with the explicit form of the relation-

ship remaining independent of environment. We call this constant functional

response density-dependent reallocation (i.e., interactions are allocated pas-

sively in modified environments, entirely according to changes in resource

density). However, consumer functional response is unlikely to remain con-

stant in modified habitats, due to effects such as different preferences for

resource species and altered foraging efficiency (Pulliam 1974). We call such
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flexible functional response active reallocation.

Our simple model of active reallocation quantifies and characterises this

dynamic process, and provides significantly better agreement with empiri-

cal data compared to density-dependent reallocation. It clarifies the role

of novel trophic interactions—also known as switches (Murdoch 1969)—and

provides a base model that can help identify more specific ecological mech-

anisms that lead to altered trophic-breadth in different environments. The

model allows consumer selectivity to increase or decrease, so that the cor-

responding distribution of interactions becomes, respectively, more specific

(over-specialisation) or more general (over-generalisation) than would be ex-

pected from density-dependent reallocation.

3.2 Materials and Methods

The information contained in food webs can be summarised in various ways.

Quantitative, weighted, equivalents of binary food-web statistics have been

developed (Bersier et al. 2002) and used extensively. The weighted con-

nectance (Cq) quantifies the amount of potential interactions that are re-

alised in the food web; the interaction diversity (Iq) quantifies the evenness

of the interactions between species; the generality (Gq) quantifies the average

number of resource species weighted by consumer abundance; and the vul-

nerability (Vq) quantifies the average number of consumer species weighted

by resource abundance (see Appendix 3.5.1). This set of metrics provide

consumer-centric, resource-centric and complete food-web summaries of in-

teractions and we used them to assess the structure of food webs across

different gradients of habitat modification in Germany, Ecuador, Indonesia
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and Switzerland.

These food webs focus on a subset of interactions involving insects at

two trophic levels: parasitoid species (consumers) and their host species

(resources). Similar methods were used to collect food-web data from the

different regions presented here, facilitating comparison. Pooling of replicate

webs within regions was necessary to maximise resolution on the webs and

minimise the possibility of artefacts due to low sampling effort (Tylianakis

et al. 2010). Patterns of parasitoid-host interactions have been shown previ-

ously to differ between forested and unforested habitats (including no to few

individual trees), and more complex compared to more simple environments

(Tylianakis et al. 2007; Laliberté & Tylianakis 2010). Therefore, we assem-

bled quantitative bipartite webs representative of less-open (hereafter com-

plex) and more-open (hereafter simple) environments in each region (Table

3.1, Figure 3.1). These categorisations were based on replicate web metadata

such as ground-level light intensity and plant species richness. There are clear

differences in the distribution of interaction frequencies among environments

and among regions (Table 3.2).

We used the difference in the Shannon evenness index (Krebs 1989) of

host species between webs (∆, Table 3.1) as a measure of the community

impact generated by habitat modification. The Shannon evenness for each

region was normalised by the maximum value it could take to get a measure

in the range [0,1]:

E =
−

∑N
i=1 pilog2pi

log2N
, (3.1)

where the numerator is the Shannon entropy for N host species, pi is the
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Region Hosts Paras Complex food web Simple food web ∆ R S Switches

Indonesiaa 11 25 Agroforest, 12 highly Agroforest, 12 less -0.078 1.225 0.05 26 (53)
forested replicates forested replicates

Germanyb 26 9 Orchard meadow Field margin strip -0.087 1 1.6 13 (55)
Ecuadorc 19 8 Forest, managed and Pasture, rice 0.145 0.975 1.3 16 (45)

abandoned coffee agroforest
Switzerlandd 20 16 Restored meadow Intensively-managed 0.169 2.775 0.15 17 (59)

ecological compensation meadow 25m, 50m and
area (ECA) 100m from ECA

Table 3.1: Food-web descriptions and active reallocation model parameters. Complex and simple food webs are
obtained by pooling replicate webs from representative environments in each region. Regions are ordered by the
difference in Shannon evenness index of hosts between webs (∆): larger values suggest increased within-region
community impact due to modification; negative values imply increasing homogenisation in the distribution of host
species, with positive values implying increasing heterogeneity. R and S are community-level parameters used in
the active reallocation model. Switches are given relative to the total number of host-parasitoid interactions.

aKlein et al. 2006
bStudy 3 in Tscharntke et al. 1998
cTylianakis et al. 2007
dAlbrecht et al. 2007
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Region Complex web Simple web Model Null 1 Null 2

Weighted Connectance
Ecuador 0.179 0.068 0.068 0.062 0.056
Germany 0.093 0.119 0.119 0.124 0.091
Indonesia 0.103 0.131 0.119 0.112 0.099
Switzerland 0.100 0.078 0.077 0.086 0.095

Interaction Diversity
Ecuador 3.82 1.79 1.77 1.42 1.13
Germany 4.13 4.01 3.95 4.41 3.92

Indonesia 3.84 4.46 4.33 4.18 3.46
Switzerland 4.52 4.03 3.91 4.09 3.84

Generality
Ecuador 8.04 2.10 2.11 2.07 1.99
Germany 4.06 6.34 6.35 6.32 4.16
Indonesia 1.92 2.69 2.44 2.73 1.64
Switzerland 4.64 2.58 2.66 3.46 3.32

Vulnerability
Ecuador 1.59 1.55 1.56 1.26 1.06
Germany 2.09 1.51 1.53 1.87 1.83
Indonesia 5.52 6.76 6.12 5.32 5.48
Switzerland 2.58 3.00 2.91 2.73 2.39

Table 3.2: Empirical metric values and model results. See Table 3.1 for a
description of food webs and active reallocation model parameters. Null 1
corresponds to the density-dependent reallocation model; Null 2 is as Null
1 but does not include switches. Entries in bolded-italics indicate values
within 5% of the empirical, simple environment, metric.

59



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A B C D E F G H I J K L M N O P Q R S T

1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16

A B C D E F G H I J K L M N O P Q R S T

Figure 3.1: Quantitative parasitoid-host food webs in complex (left) and
simple environments (right) for the Switzerland data. For each web, lower
bars represent host (bee and wasp) density and upper bars represent par-
asitoid density, drawn at different scales. Linkage width indicates the fre-
quency of each trophic interaction. Interactions are classified as switches
(novel interactions) if they appear in the simple but not complex environ-
ment (highlighted in green).

proportional density for host species i, and the denominator is the maximum

possible evenness of the distribution. We compare the environments of com-

plex and simple webs using ∆ = Ecomplex −Esimple. ∆ close to zero indicates

little change in host distribution, implying little impact due to modification

between complex and simple environments; larger values suggest increased

impact. Negative values imply increasing homogenisation in the distribution

of host species, with positive values implying increasing heterogeneity. This

analysis leads to the following ordering from least-to-most severely altered

region: Indonesia, Germany, Ecuador, and Switzerland (Table 3.1).

We model quantitative food-web structure in simple environments using

data from complex environments. We begin by assuming that each interac-

tion between host i and parasitoid j in the complex food web follows a linear

functional response

yij = mijxi , (3.2)
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where mij is the observed per-capita attack rate (i.e., the empirical number

of parasitism events divided by the host density). To assess whether the

assumption of linear functional response is reasonable, we fit Type I (lin-

ear) and Type II (saturating) functional forms to complex web interactions

where more than three replicate web interactions contribute to a pooled web

interaction. For the Type II functional response, we performed a non-linear

least-squares fit with a Michaelis-Menten form

yij =
vijxi

Kij + xi

, (3.3)

where vij is the saturation interaction strength, and Kij is the rate constant.

We assigned a classification—linear or saturating—as the form giving the

lowest mean square error following the least-squares procedure (assuming the

saturating form has biologically-reasonable parameters, i.e., the rate constant

should not be negative). In our complex web data, we found that the majority

(72%) of interactions permitting classification were better fit by a linear

rather than saturating functional form. A Type III (sigmoidal) response

was not considered here because the limited number of data points for each

pooled web interaction would make distinguishing between Type II and Type

III forms very difficult. The majority of interactions (73% across Indonesia,

Ecuador and Switzerland) in each pooled web were observed in only one of

the contributing replicate webs. For these interactions, we can only assume

the most parsimonious possibility of a linear response between interaction

frequency and resource density. Germany did not have a sufficient number

of replicate webs for this analysis.

With density-dependent reallocation, by definition, the set of m-coefficients
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is independent of the environment. Consequently, we can use Equation 3.2

(parameterised from the complex environment) to model the interaction dis-

tribution for each parasitoid species in a simple environment (e.g., after habi-

tat modification), given a new empirical distribution of host species. We

compare this density-dependent deterministic model to empirical data from

the simple environment by running stochastic simulations of parasitoid-host

interactions that incorporate two sources of uncertainty: i) error arising from

differences in observed per-capita attack rates among replicate webs; and ii)

error arising from requiring integer numbers for interaction events.

We quantified variation in the per-capita attack rate (the number of par-

asitism events divided by the host density, mij in Equation 3.2) between

replicate webs using linear least-squares regression. Where more than three

replicate web interactions contributed to a pooled interaction, we recorded

the standard deviation of the residuals and the pooled number of para-

sitism events (pooled interaction frequency). Since we are conducting a

least-squares minimisation, residuals are approximately normally distributed

(mean zero) with their standard deviation representing the error on the true

value of a pooled interaction. Compiling all interactions, we fit a linear rela-

tionship between pooled interaction frequency, J , and the expected error in

that value: σJ = a+bJ , where a and b are constants from a linear regression.

We used this relationship to incorporate per-capita attack-rate uncertainty

into simulations of species interactions in simplified environments. For a

given deterministic prediction for the frequency of an interaction, the er-

ror on that value is drawn from a normal distribution with mean zero and

standard deviation σJ .
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Simulations provided an expected frequency-weighted interaction gener-

ality for each parasitoid species, with an associated standard deviation, which

was compared to empirical data using the z-score. The diversity of interac-

tion inflows to a consumer k is,

Hk = −
r

∑

i=1

bik

b•k
log2

bik

b•k
, (3.4)

where bik is the interaction contribution from resource i and b•k is the total

interaction frequency into k, for a total of r resource species. The number of

resource species a consumer has (weighted according to their use frequency) is

then nk = 2Hk . The empirical value for nk can be compared to the interaction

distribution generated by density-dependent reallocation (Null model 1, see

below) using the z-score

zk =
〈nk〉 − n∗

k

σnk

, (3.5)

where n∗

k is the empirical value, 〈nk〉 is the average value of an ensemble of

model randomisations and σnk
is the standard deviation of the same quan-

tity. Values of zk > 0 indicate over-specialisation and zk < 0 indicate over-

generalisation.

The active reallocation model is deterministic and, as with density-dependent

reallocation, begins by assuming that interactions follow a linear functional

response (see Appendix 3.5.2). However, the set of m-coefficients for a para-

sitoid species can be altered between environments by two community-level

parameters, R (resource-based changes) and S (switch-specific changes). The

parameters take positive values and adjust the dispersion of m-coefficients for

each parasitoid species: R, S > 1 “stretches” consumer interaction distribu-

tions (m-coefficients become more different), thereby promoting preference
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of some hosts over others; whereas R, S < 1 “compresses” consumer interac-

tion distributions (m-coefficients become more similar), thereby homogenis-

ing host preference. The model permits two additional modes of consumer

behaviour compared to density-dependent reallocation: i) consumer inter-

action frequencies can change in a non-linear way following changes in re-

source density (through R); and ii) switches—interactions that are absent

in the complex web but present in the simple web—are afforded a separate

role to existing interactions in determining quantitative food-web structure

(through S). We set parameter values giving closest agreement with the em-

pirical data (deterministic model, Table 3.1) and run stochastic simulations

as with density-dependent reallocation.

We compare the reallocation model to two null models. Null model 1

corresponds to density-dependent reallocation and assumes that changes in

interaction frequency (including switches) are solely determined by changes

in resource density. Null model 2 is as Null model 1 but does not include

switches; it assumes that the maximum possible set of interactions in the

simple food web remains the same as in the complex food web.

The closeness of a model quantitative food-web metric, Q∗, to the empir-

ical value, Q, is

δQ =

∣

∣

∣

∣

∣

Q∗ − Q

Q

∣

∣

∣

∣

∣

, (3.6)

values closer to 0 indicate better agreement with the empirical value. Close-

ness to empirical data is measured by assessing all four metrics jointly for

each simulation run, and we use the largest value of δQ as our measure.

However, we find similar qualitative results if the average of the individual
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metric closeness values is used rather than taking the maximum value for the

closeness.

3.3 Results

In simple environments, empirical data displayed significant deviation from

density-dependent reallocation with a clear community trend (Figure 3.2).

In Indonesia we primarily observed over-generalisation of parasitoid inter-

actions, while in Germany, Ecuador and Switzerland we primarily observed

over-specialisation. Generalist parasitoid species (those with a broad host

range) tended to display greater over-specialisation (Pearson correlation be-

tween positive z-score and weighted interaction generality: r = 0.51, d.f.

= 18, p = 0.02; Figure 3.3). Thus, in simplified environments, more gen-

eralist parasitoids (as measured in the complex environments) tended to

over-specialise to a greater degree than less-generalist parasitoids. However,

there was no significant relationship between the absolute z-score for over-

generalisation (interactions with a negative z-score) and parasitoid interac-

tion generality (Pearson correlation: r = −0.21, d.f. = 17, p = 0.39).

Of 58 parasitoid species across the 4 regions, 19 were specialists with

interactions to only one host, and were excluded from this analysis. We

observed over-specialisation (positive z-score) in 20 parasitoid species (8 with

a z-score > 1.96, individual test significance p < 0.05) and over-generalisation

(negative z-score) in 19 parasitoid species (4 with a z-score < -1.96, p < 0.05,

all in the Indonesia data set).

Following Moran (2003), we can assess how likely it would be to obtain

the observed number of statistically significant—individual test—incidences
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Figure 3.2: Empirical parasitoid generality in simple environments com-
pared to a density-dependent reallocation model for four regions. Density-
dependent reallocation assumes constant, linear, parasitism functional re-
sponse between complex and simple environments. Each point represents
a parasitoid species, with 10,000 simulations per parasitoid for each region.
A z-score > 0 indicates over-specialisation, a z-score < 0 indicates over-
generalisation; values exceeding ±1.96 have significance p < 0.05 (horizontal
dashed lines). Parasitoids with only one interaction have a z-score = 0 by
construction and are omitted.
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Figure 3.3: The z-score for over-specialisation is positively correlated with
frequency-weighted parasitoid interaction generality. (Pearson correlation,
r = 0.51, d.f. = 18, p = 0.02). If the data point with a very high z-
score (≈ 9) is removed, then the Pearson correlation is r = 0.42, d.f. = 17,
p = 0.07.
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of over-specialisation and over-generalisation within regions by chance. The

probability of X individual tests being statistically significant (at the p <

0.05 level) out of Y tests can be calculated using a Bernoulli process (see

Moran 2003 for details). In Indonesia we observed 4 significant individual

tests out of 11, giving a probability of 0.001 that this result would occur

by chance; in Germany the probability is 0.0054 (3 out of 8 significant); in

Ecuador the probability is 0.28 (1 out of 8 significant); and in Switzerland

the probability is 0.002 (4 out of 12 significant).

A more conservative assessment of the significance of our results can be

obtained by applying sequential Bonferroni (single-tailed significance, see

Moran 2003 for a description). Sequential Bonferroni increases the level at

which an individual test can be considered significant based on the number

of tests performed. It provides a complementary assessment to the Bernoulli

method, which does not alter the significance level between individual and

multiple hypothesis testing. Using sequential Bonferroni, we strongly reject

the null hypothesis (meaning that the z-scores can be considered significant)

for two parasitoids in Indonesia, two parasitoids in Germany, one parasitoid

in Ecuador, and one parasitoid in Switzerland. Thus, density-dependent

reallocation was insufficient to fully explain empirical data.

The active reallocation model is deterministic and has two community-

level parameters: R (resource-based changes) and S (switch-specific changes).

We set parameter values giving closest agreement to the empirical data. In

the parameter spaces of Ecuador, Germany and Indonesia (Figures 3.4–3.6),

the values of R and S that provide the best agreement with the empirical

data (lowest closeness values) are restricted to relatively small ranges. How-
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Figure 3.4: Active reallocation model parameter space for Ecuador. Close-
ness (scale on right-hand-side) to empirical data is measured by assessing all
four food-web metrics jointly; values closer to 0 indicate better agreement
with empirical data. Best-fit parameter values R = 0.975, S = 1.3.

ever, in the Switzerland parameter space (Figure 3.7), the closeness remains

essentially the same for the range of S-values considered. This indicates that

S does not significantly contribute to altering the distribution of consumer-

resource interactions in the simple environment. The best-fit value, S =

0.15, was used in stochastic simulations, but results are similar if values of

0 < S < 2 are used.

The active reallocation model provided good agreement with empirical

data, and significantly out-performed two null models (Figure 3.8 and Ta-

ble 3.2): i) density-dependent reallocation (Null model 1); and ii) density-

dependent reallocation excluding switches (Null model 2). The success of the

model emphasises that consumer selectivity can change substantially follow-

ing habitat modification. With regions ordered by changes in the Shannon
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Figure 3.5: Active reallocation model parameter space for Germany. Close-
ness (scale on right-hand-side) to empirical data is measured by assessing all
four food-web metrics jointly; values closer to 0 indicate better agreement
with empirical data. Best-fit parameter values R = 1, S = 1.6.
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Figure 3.6: Active reallocation model parameter space for Indonesia. Close-
ness (scale on right-hand-side) to empirical data is measured by assessing all
four food-web metrics jointly; values closer to 0 indicate better agreement
with empirical data. Best-fit parameter values R = 1.225, S = 0.05.

70



S

R

 

 

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 0

0.2

0.4

0.6

0.8

1

Figure 3.7: Active reallocation model parameter space for Switzerland.
Closeness (scale on right-hand-side) to empirical data is measured by assess-
ing all four food-web metrics jointly; values closer to 0 indicate better agree-
ment with empirical data. Best-fit parameter values R = 2.775, S = 0.15.

evenness of hosts, we find that as communities become more impacted, the

relative performance of the active reallocation model compared to Null model

1 increases (Figure 3.8). This result is consistent with increasingly simplified

environments permitting more efficient foraging (Gols et al. 2005; Laliberté

& Tylianakis 2010), such that parasitoids can be more selective in the hosts

they parasitise.

3.4 Discussion

We further assess the effect of habitat modification on resource selection by

considering the parameter values obtained for each region (Table 3.1). In

Switzerland, habitat simplification and homogenisation may have enabled

particular—presumably preferred—hosts to be located more easily by par-
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Figure 3.8: Increasing impact of within-region habitat modification (left-
to-right) leads to greater separation between the active reallocation (circles,
mean ± s.d.) and density-dependent reallocation (squares) models. Density-
dependent reallocation excluding switches (triangles) performs significantly
worse in all regions. Closeness is defined as the percentage difference be-
tween model and data for the worst-performing food-web metric of the set
{Cq, Iq, Gq, Vq} and lower values indicate better agreement with empirical
data. The same trend is observed if the average of the individual metric
closeness values is used rather than taking the maximum value for the close-
ness. Data are shown for 10,000 simulations per model for each region.
Regions are ordered by the impact of habitat modification, which is given by
changes in the Shannon evenness index of hosts (∆, values in Table 3.1).
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asitoids, driving over-specialisation within existing interactions (R > 1; S

not significant, see Figure 3.7). In Ecuador and Germany, switches drove

over-specialisation and some of those interactions were to preferred hosts

(R ∼ 1; S > 1); in Indonesia, switches drove over-generalisation but those

interactions were treated homogenously (R ∼ 1; S ∼ 0). We suggest the fol-

lowing explanation for this difference. The habitat modification in Germany,

Ecuador and Switzerland can, independent of changes in host diversity, be

considered more severe than in Indonesia (where all replicate webs are from

the same agroforest compared to different habitat classes in the other three

regions). In less-severe simple habitats, parasitoids can locate a broader

range of preferred hosts compared to a reduced set of host species in more-

severe habitats. In Indonesia, over-generalisation is expected if conversion

into more simple environments primarily increases the chance of parasitoids

coming into contact with hosts. This interpretation is also consistent with

differences in the functional response of switches between regions.

We assumed a linear functional form for the relationship between inter-

action frequency (parasitism) and host density. The success of the active

reallocation model compared to the density-dependent reallocation model

indicates that parasitoid preference for hosts can change substantially fol-

lowing habitat modification. We suggested that this result is consistent with

increasingly simplified environments permitting more efficient foraging (Gols

et al. 2005; Laliberté & Tylianakis 2010), such that parasitoids can be more

selective in the hosts they parasitise. This behaviour is consistent with re-

sults observed for the parasitoid species Ichneumonidae sp.3 in Indonesia, and

Melittobia acasta in both Ecuador and Switzerland. Melittobia is a very gen-
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eralist parasitoid species, which affords it greater flexibility in selecting from

available hosts compared to more inherently specialist parasitoid species.

The model showed that switches could play significantly different roles

between regions and that neglecting switches all together (Null model 2)

produced very poor agreement with empirical data (see Figure 3.8). We

examined switches more closely by comparing the set of functional responses

suggested by the simple environment data to those suggested by the complex

environment data. We observed different functional responses for switches

in Ecuador and Switzerland compared with Indonesia (as before, Germany

does not have a sufficient number of replicate webs for this analysis).

In Ecuador and Switzerland, the data suggest that switches are consis-

tent with the low- to mid-density regime of a Type III (sigmoidal) functional

response; that is, there is essentially no parasitism at low host densities, fol-

lowed by increasing rates of parasitism as host density increases. This con-

firms a very natural expectation of how the functional response of switches

should differ from existing interactions. Thus, the linear approximation—

drawn from data comprising complex environments only—underestimates

the magnitude of the functional response. This lends credence to increas-

ing the relative importance of switches compared to existing interactions in

the active reallocation model (we add 1 to the relative density change for

switches to ensure that they are always positive, see Appendix 3.5.2). In

Ecuador, switches are observed to drive over-specialisation in the parasitoid

species Coelioxys sp. and Chrysis sp.; switches are treated no differently from

existing interactions in Switzerland.

In Indonesia, the functional response of switches in the simple environ-
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ment is again consistent with the low-density to mid-density regime of a

Type III functional response. However, if host densities from the complex

environment are included when assessing the functional response, a negative

response is suggested (increasing host density leads to fewer interactions).

This is because no host-parasitoid interactions (of the subset of switches)

were observed in the complex environments despite greater host density com-

pared with the simple environments. In the less-severe habitat of Indonesia,

simplified environments primarily increase the chance of parasitoids com-

ing into contact with hosts—parasitoids can thus locate a greater variety of

(preferred) hosts. In this case, the more efficient foraging permitted by sim-

plified habitats can lead to switches driving over-generalisation, as observed

in the parasitoid species Chrysis smaragdula, Stilbum chrysocephalum, and

Tachinidae sp.1 and sp.2.

Pure density-dependent resource selection, whilst providing an informa-

tive qualitative assessment, cannot account for all changes in quantitative

food-web structure following habitat modification. Changes in consumer

behaviour (illustrated by changes in functional response) between habitats

must also be considered. In simplified environments, novel trophic interac-

tions were formed and feeding preferences were observed to adjust to new

host assemblages. The active reallocation model does not specify underlying

behavioural mechanisms beyond altered consumer preference and provides

substantial motivation for incorporating species’ behaviour into food web re-

search. Indeed, our results are consistent with increased parasitoid foraging

efficiency in simplified environments. The model accurately generates quan-

titative interaction frequencies in non-size-structured food webs (i.e., where
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resource use is not limited by consumer body size) and represents a significant

advance towards the important goal of modelling realistic consumer feeding

(Ings et al. 2009). Food-web structure is dynamic and influenced both by

environmental factors, such as resource distribution and availability, and by

species-level factors such as behaviour and resource preference. Understand-

ing the mechanisms underlying altered trophic-breadth and selective species

interactions will help with the planning of habitat restoration projects and in

assessing their efficacy. Adaptive functional response—active reallocation—

needs to be taken into account when developing forecasts of the effects of

human-induced disturbances on community structure and composition.
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Laliberté, E. & Tylianakis, J.M. (2010). Deforestation homogenizes tropical

parasitoid-host networks. Ecology, 91, 1740–1747.

Lewis, O.T. et al. (2002). Structure of a diverse tropical forest insect-

parasitoid community. J. Anim. Ecol., 71, 855–873.

Losey, J.E. & Vaughan, M. (2006). The economic value of ecological services

provided by insects. Bioscience, 56, 311–323.

Memmott, J., Godfray, H.C.J. & Gauld, I.D. (1994). The structure of a

tropical host-parasitoid community. J. Anim. Ecol., 63, 521–540.

Memmott, J. (1999). The structure of a plant-pollinator food web. Ecol.

Lett., 2, 276–280.

Millennium Ecosystem Assessment (2005). Ecosystems and Human Well-

Being: Current State and Trends. Island Press, Washington, DC.
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3.5 Appendix

This appendix contains a description of the quantitative food-web metrics

used in this study and a fuller description of the active reallocation model.

3.5.1 Quantitative food-web metrics

Quantitative, weighted, equivalents of binary food-web statistics have been

developed and used extensively (Bersier et al. 2002). Here, we use four

quantitative metrics, weighted connectance (Cq), interaction diversity (Iq),

generality (Gq) and vulnerability (Vq), to assess the structure of food webs

across gradients of habitat modification.

The diversity of inflows, HN , for a parasitoid species k is

HN,k = −
r

∑

i=1

bik

b•k
log2

bik

b•k
, (3.7)

where r is the total number of host species and b•k represents the total number

of interactions of parasitoid k across all hosts. The diversity of outflows, HP ,

for a host species k is

HP,k = −
s

∑

j=1

bkj

bk•

log2
bkj

bk•

, (3.8)

where s is the total number of parasitoid species and bk• represents the total

number of interactions of host k with all parasitoids. The reciprocals of HN,k

and HP,k are

nN,k = 2HN,k ; nP,k = 2HP,k , (3.9)
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where nN,k = 0 if b•k = 0 and nP,k = 0 if bk• = 0. We refer to nN,k as the

weighted interaction generality for a parasitoid species k, it represents the

average number of host species interacted with by that parasitoid.

The weighted food-web generality is

Gq =
s

∑

k=1

b•k
b••

nN,k , (3.10)

where b•• is the total number of interactions in the food web.

The weighted food-web vulnerability is

Vq =
r

∑

k=1

bk•

b••
nP,k . (3.11)

The weighted version of the food-web connectance is

Cq =
Gq + Vq

2(r + s)
. (3.12)

The weighted food-web interaction diversity is

Iq = −
s

∑

k=1

b•k
b••

log2
b•k
b••

. (3.13)

3.5.2 Active reallocation model

The model generates the interaction distribution for a set of consumers in

a simple environment given a known quantitative food web from a more

complex environment and change in resource (host) density. To account

for potential sampling differences between complex and simple food webs,

switches are allocated a minimal interaction of 1 in the complex food web.

Given an interaction matrix Aij, we find a transformation, Tij , that gives

the equivalent matrix for a simple environment A∗

ij = Aij × (1 + Tij). The

transformation matrix can be decomposed into vector contributions, aj , from
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each of n consumers: Tij = (a1, a2, . . . , an). There are five steps involved in

obtaining Tij.

• Step 1. The consumer contribution begins as the proportional difference

in resource density (both parasitised and unparasitised hosts) between en-

vironments; the vector has mean mj . Novel interactions are constrained

to be positive by adding 1 to each entry of aj that constitutes a switch.

• Step 2. The subset of switches, a′

j , is modified using the parameter, S,

such that a′

j → (a′

j)
S. Values of S > 1 represent increased preference for

particular hosts, S < 1 represent reduced preference.

• Step 3. The consumer contribution is adjusted according to the mean

abundance change: aj → (aj − mj)/mj.

• Step 4. The adjusted vector is modified using the parameter, R, such that

aj → (aj)
R. The meaning of R > 1 and R < 1 is the same as for S.

• Step 5. The modified consumer contribution is readjusted by the mean:

aj → mj(aj + 1).

The consumer interaction distribution is pj = (aj+min(aj))/
∑

j(aj+min(aj)),

and is normalised to 1. The total distribution in the simple environment,

Pij = (p1, p2, . . . , pn), is deterministic. Consumer densities in the simple en-

vironment are given by A∗

ij and stochastic simulations using Pij are used to

obtain model food webs that can be compared with empirical data. Null

model 1: Density-dependent reallocation is modelled by setting R = S = 1

and neglecting the positive constraint on switches in Step 1. Null model 2:

As Null model 1 but switches are not included in the model.
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Chapter 4

Spatial contagion of fluctuations

in social systems

Mechanisms describing the propagation of fluctuations in social and economic

systems are not well characterized. By analyzing the number of venture cap-

ital firms registered in 509 cities of the United States of America between

1981 and 2003, we identified patterns in the spatial-temporal distribution

of fluctuations in the number of registered venture capital firms (population

fluctuations) in 9 regions. Despite large differences in geographical size, city

topology and venture capital firm density, we found that fluctuation dynamics

were consistent with spatial contagion. In all regions, fluctuations were more

likely to occur in cities that were in close spatial proximity to cities that dis-

played fluctuations during the preceding year. We developed a simple model

of contagion that was consistent with the empirical data. Simulations sug-

gested that population fluctuations caused fluctuations in nearby cities with

a strength that decayed exponentially with distance. The influence of cities

was additive: the more surrounding cities that demonstrated fluctuations in

the preceding year, the more likely a city would experience a population fluc-
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tuation in the following year. Furthermore, the transmission of fluctuations

took place on a minimally connected city network that contained a largest

connected component. This study has identified and quantified higher-order

patterns of economic agent mobility in regions of high venture capital activ-

ity. Our results and methods are relevant to understanding the propagation

of fluctuations in a broad range of spatially-embedded systems.

4.1 Introduction

Spatial patterns characterizing economic activities (Fujihita et al. 2001) and

technological innovations (Bettencourt et al. 2007, 2010) exhibit marked in-

homogeneities, which can be explained by transport or other infrastructure

costs and spill-over effects. For instance, manufacturing industries across US

states have been shown to exhibit significant levels of geographic concentra-

tion (Krugman 1991), and high-tech regions in particular are characterized by

strong spatial clustering (Breschi & Malerba 2005; Saxenian 1994). Key fac-

tors believed to drive the co-location of firms in high-tech industries include

access to highly skilled labor markets and access to private equity finance

in the form of venture capital firms (VCFs) (Stuart & Sorenson 2003a,b;

Ferrary & Granovetter 2009). Proximity to potential target firms makes it

easier for a VCF to monitor its investments, and the widespread practice of

syndicated investing—to share knowledge and spread risk—generates direct

interactions between different VCFs that can also impact location decisions.

Typically, more than one VCF will invest in a given target firm, especially

when there are multiple funding rounds. The resulting syndication network

of VCFs serves as a conduit for information about current investments and
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future deals (Bygrave 1987, 1988; Sorenson & Stuart 2001; Hochberg et al.

2007), may restrict entry into local venture capital markets (Hochberg et al.

2010), and often builds on repeated interactions between trusted partners

(Kogut et al. 2007). Hence, geographic concentrations of VCFs and the

target firms in which they invest can be expected to follow related patterns,

where both spatial proximity and network effects play a role. From the per-

spective of spatial dynamics and network growth, this would suggest that

a significant effect is agglomeration and increasing spatial concentration of

VCF activity over time (Fleming et al. 2007; Powell et al. 2005).

In many social and economic systems, it is possible to observe the effects

of contagion and spatial diffusion processes (Strang & Soule 1998; Dodds

& Watts 2004). Prominent examples include the diffusion of innovations

(Griliches 1957; Coleman et al. 1957; Rogers 2003), the spatial diffusion

of trade union movements (Hedström 1994), the outbreak of strikes (Biggs

2005), and the spread of obesity (Christakis & Fowler 2007). Recent findings

also suggest that many human activities, like the writing and sending of

messages in online communities, exhibit large fluctuations that appear to

follow simple scaling laws (Rybski et al. 2009). Such behavior applies to

speculative bubbles in financial markets (Shiller 2000), the popularity of

online content (Szabo & Hubermann 2010), and the spread of innovations in

online environments (Onnela & Reed-Tsochas 2010). For systems that are

spatially embedded, this raises the question of whether temporal fluctuations

in social and economic activities exhibit spatial contagion, and to what extent

the spread of fluctuations differs from the spread of average activity patterns.

We addressed this question in a specific context, by tracking the num-
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ber of VCFs in 509 US cities between 1981 and 2003. Of the 50 US states

(976 cities had at least 1 registered VCF), 8 states had sufficient numbers

of cities and VCFs for analysis—the other states were unsuitable because

the majority of their cities contained only 1 VCF throughout the 23-year

period. The suitable states were divided into 9 geographical regions for com-

parison: California North, California South, Connecticut, Massachusetts,

New Jersey, New York, Pennsylvania, Texas, and Virginia. We studied

the spatial-temporal dynamics of fluctuations in the number of registered

VCFs (population fluctuations) between cities in each region. By consider-

ing fluctuations, we attempted to identify patterns of contagion that may be

masked by heavy-tailed distributions of VCFs that can arise from density-

driven agglomeration and spatial concentration effects. Such an approach

also mitigates the influence of exogenous factors—such as economic cycles,

and changes in legislation and borrowing rates—enabling higher-order effects

to be emphasized. We found that fluctuation dynamics in all regions were

consistent with a simple model of spatial contagion.

4.2 Model and methods

We analyzed the effect of spatial proximity on fluctuations in cities separated

by a range of distances. Our method allowed patterns of fluctuations to be

distinguished independently of spatial layout, and is applicable to any sys-

tem of non-uniformly distributed objects capable of displaying fluctuations.

From registered VCF data, we obtained a binary matrix indicating which

cities displayed population fluctuations during each year. A fluctuation was

defined as having registered numbers of VCFs 1 standard deviation above
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the 5-year moving average for that city; this threshold was chosen because

it represents a significant deviation from the long-term average whilst still

retaining sufficient information to conduct quantitative analysis. The 5-year

moving average approximates a typical business cycle (Kitchin 1923). For

each fluctuation, we counted the number of fluctuations during the preced-

ing year at cities within an inter-city influence range, δ km, from the focal

city. We obtained an average value for the number of preceding fluctuations

for all cities and over the entire time period: n. The variation of n with

inter-city influence range, nδ, characterized the spatial-temporal dynamics of

fluctuations within the system.

To test for patterns in fluctuation dynamics in the empirical data, we

compared nδ with samples generated by two null models. Null model 1 as-

sumed no spatial preference regarding which cities displayed fluctuations:

each city had an equal probability of producing one of the observed fluc-

tuations in a each year. Null model 2 tested for temporal ordering in the

identity of cities displaying fluctuations: the probability of a city producing

one of the observed fluctuations in a year was proportional to its empirically

observed rate, independent of other cities. It accounted for the observation

that some cities produced more fluctuations than others, but assumed no

temporal ordering as to when fluctuations occurred. For both null models,

the number of fluctuations at each year was fixed to the empirically observed

value. We quantified differences between the empirical data and null models

using a z-score measure.

Empirical nδ was compared to the two null models using a z-score mea-

sure: zδ = (nδ − 〈n′

δ〉)/σn′

δ
, where 〈n′

δ〉 is the average from a null-model
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ensemble and σn′

δ
is the standard deviation of the same quantity. zδ for the

spatial contagion model was obtained by replacing nδ with the average value

from model realizations.

We devised a spatial contagion model of fluctuations to account for the

empirical data. Fluctuations in a city are assumed to be produced by a

modified Poisson process with firing rate λ:

f(k; λ) =
λke−λ

k!
, (4.1)

where k is the number of fluctuations, the probability of which is given by the

above function. The firing rate for an individual city, i, can be decomposed

into three terms:

λi = λresting + λself + λexcitation; (4.2)

where λresting is the unconditional rate of a fluctuation occurring, λself is the

rate of a fluctuation occurring given a fluctuation in the focal city during

the preceding year, and λexcitation is the rate of a fluctuation occurring given

fluctuations in spatially proximate cities during the preceding year.

In practice, the model determines which cities produce fluctuations based

on their proximity to cities displaying fluctuations during the preceding year.

The probability of a city, i, producing fluctuations during year t + 1 is

Pi,t+1 ∝ 1 + CHi[y] +
∑

j(t)

Ae−xij/ρ, (4.3)

where the summation runs over all cities. Hi[y] is the Heaviside function and

equals 1 if city i displayed a fluctuation during year t, and equals 0 otherwise;

xij is the distance between cities i and j and the summation runs over all
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cities that displayed fluctuations during year t. The constant term ensures

that there is a finite probability of a city producing a fluctuation (λresting).

Parameter C represents the propensity for cities to produce runs of fluctu-

ations (λself). Parameter A represents the strength of inter-city influence

and ρ is the characteristic distance of influence; the exponential term deter-

mines the increased probability of fluctuations arising from proximity effects

(λexcitation). The probability is additive: the more cities in close proximity

that displayed fluctuations during the preceding year, the more likely a city

is to produce a fluctuation during the subsequent year. The model explic-

itly incorporates contagion: fluctuations can appear from multiple sources

and can be transmitted between cities, with increased probability to those in

close proximity. As with the null models, the number of fluctuations at each

year was fixed to the empirically observed value.

We recorded parameter values (C∗, A∗, ρ∗) giving greatest similarity to

empirical nδ. Similarity was defined as the Euclidean distance between model

and empirical nδ’s. The Euclidean distance is drs = [(lr − ls) · (lr − ls)]
1/2,

where lr and ls are vectors representing two nδ’s. Lower values for the Eu-

clidean distance indicated greater similarity between vectors. Using these

best-fit parameters, we calculated a value for the critical inter-city influence

distance, δ∗, which represents the effective range of contagion. This is de-

fined as the distance where the model inter-city influence term,
∑

j(t) Ae−xij/ρ

in Equation (4.3), is equal to 0.1: δ∗ = ρ∗lnA∗

0.1
. The value of 0.1 is small

relative to the other terms, and setting it to be a constant aids comparison

between states. Model parameters for the 9 regions are given in Table 4.1.

The model reduces to null model 1 with C = 0 and for A, ρ → 0,∞.
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State Cities Max δ (km) VCFs in 1981 VCFs in 2003 C∗ A∗ ρ∗ (km) δ∗ (km)

California North 73 350 52 518 8 1.4 11 29
California South 84 510 32 137 4 2.2 3 9
Connecticut 38 160 26 62 3 3 3 10
Massachusetts 62 300 48 185 6 0.8 8 17
New Jersey 74 180 12 53 4 2.6 2 7
New York 72 620 101 286 5 1 1 2
Pennsylvania 53 480 15 68 7 2 3 9
Texas 30 1500 27 126 0.5 8.2 24 106
Virginia 23 390 5 56 14 3.4 20 71

Table 4.1: Results for 9 US regions.
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Figure 4.1: Histogram of VCF density for all 509 cities in the dataset for
the period 1981 to 2003. The VCF density was the cumulative number of
registered VCFs in each city. The distribution of VCF density has a heavy-
tail: there were many cities with very few VCFs and some cities with a very
large number of VCFs.

4.3 Results

The VCF dataset comprised data on the annual number of registered VCFs

in 509 cities in 8 US states for the period 1981 to 2003; and the latitude and

longitude coordinates of each city. We required a US state to have at least

5 cities with an average of 1 VCF registered in the city over the 23-year period

to be included in the dataset. Cities must have had at least 1 VCF registered

during the 23-year period to be included in the dataset. The number of VCFs

increased from 318 to 1491 over the 23-year period. The distribution of VCF

density was heavy-tailed (Figure 4.1). That is, there were many cities with

very few VCFs and some cities with a very large number of VCFs.

Cities with greater numbers of registered VCFs were more likely to display

population fluctuations (Figure 4.2). Over the 23-year period, we found
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Figure 4.2: Population fluctuations in a city were positively correlated with
the number of registered VCFs. For each city, we plot the number of fluc-
tuations sampled annually between 1981 and 2003 against the cumulative
number of registered VCFs over the 23-year period. Regression analysis is
significant: R = 0.79, d.f. = 508, p < 0.0001. Thus, cities with greater num-
bers of registered VCFs were more likely to display population fluctuations.

significant positive correlation between the number of fluctuations and the

number of registered VCFs in a city (R = 0.79, d.f. = 508, p < 0.0001). This

finding can be interpreted as a density-driven process: VCFs locate in cities

with high VCF concentration; it follows that more VCF-dense cities are then

more likely to experience population fluctuations. However, it remains to

be shown whether fluctuations appeared independently or whether they may

have been transmitted between cities.

We analyzed the pattern of fluctuations separately for the 9 regions. De-

spite large variations in geographical size, city topology and VCF density

(Table 4.1), the VCF data showed significant deviation from both null mod-

els (Figure 4.3; figures for the other 7 regions are provided in the Appendix).

For all regions, we observed an increased probability of runs of fluctuations
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within cities (significant z-score at δ = 0). For δ > 0, the deviation was most

pronounced at small δ and gradually decreased with increasing δ. Devia-

tion from null model 1 indicated that fluctuations were localized to distinct

spatial scales. Deviation from null model 2 indicated that fluctuations were

temporally coupled between cities in close proximity.

The spatial contagion model provided a good fit to the empirical data.

The central assumption of the model is an inter-city influence function that

decays exponentially with distance and acts additively. This simple assump-

tion accounted for almost all deviation of empirical data from the null models

(measured using the z-score, Figure 4.3). Values for the critical inter-city in-

fluence distance, δ∗, may be explained by the spatial topology of cities in

each region. Cities are linked in a hypothetical influence network if they are

separated by less than distance δ. We tracked the proportion of cities and

links involved in the network as δ is varied (Figure 4.4). The model-derived

value of δ∗ represents a topology of minimally-connected cities with a largest

connected component (Figure 4.5). Thus, fluctuations were typically trans-

mitted between neighboring cities, and there was an indirect propagation

route between almost all cities in the network.

4.4 Discussion

All 9 regions demonstrated significant deviation from two null models and our

simple model, which explicitly incorporates contagion dynamics, provided a

good fit to the empirical data. The model highlighted the importance of runs

and propagation in fluctuation dynamics. The parameter C represents the

increased probability of runs of fluctuations beyond the strength of inter-city

93



0 50 100 150 200 250 300 350
−2

0

2

4

6

8
California North

δ (km)

z−
sc

or
e

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

δ (km)

z−
sc

or
e

0 50 100 150 200 250 300
−2

0

2

4

6
Massachusetts

δ (km)

z−
sc

or
e

0 10 20 30 40 50 60
−2

0

2

4

6

8

δ (km)

z−
sc

or
e

Figure 4.3: Fluctuation patterns in California North and Massachusetts state. Empirical data (bars) and model
(circles, mean ± std.) compared to two null models (top panels: null model 1; bottom panels: null model 2);
contagion was identified as significant z-scores at restricted inter-city influence distances, δ; z-score > 1.96 represent
significance level p < 0.05. We observed an increased probability of runs of fluctuations within cities (significant
z-score at δ = 0) with both null models. Deviation from null model 1 indicated that fluctuations were localized to
distinct spatial scales. Deviation from null model 2 indicated that fluctuations were temporally coupled between
cities in close proximity. Model and null-model simulations represent 1000 realizations.
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Figure 4.4: City influence network composition for California North and
Massachusetts state. Cities are linked in a hypothetical influence network if
they are separated by less than distance δ. The figure plots the proportion
of cities (solid line) and links (dashed line) involved in the influence network
as δ is varied. The model-derived critical inter-city influence distance, δ∗,
represents a particular topology of the network (Fig. 4.5).

influence (set by parameter A) at δ = 0. Thus, if we ignore the cumulative

effect of influence, fluctuations were more likely to re-occur in cities than

be transmitted to neighboring cities. This increase in probability ranged

from 1.1 times inter-city strength for Texas to 8.5 times for Massachusetts

(calculated as (C∗+A∗)/A∗, Table 4.1). Propagation of fluctuations was well

described by an additive, exponentially-decaying, influence function. Values

for the critical inter-city influence distance (δ∗ = ρ∗lnA∗

0.1
) ranged from 2 km

for New York to 106 km for Texas. The range of values can be accounted for

by typical inter-city distances in each region (see Figure 4.4). However, when

comparing regions, δ∗ was found to correspond to similar influence network

topologies: minimally connected cities and a largest connected component

(see Figure 4.5). Figures for the other 7 regions are provided in the Appendix.

The spatial contagion model was not based on any mechanism particular

to the venture capital industry. However, features underlying the model can
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Figure 4.5: Influence network topology at the critical inter-city influence distance for California North and Mas-
sachusetts state. Cities are linked if they are separated by less than distance δ∗ (see Model & methods); contagion
of fluctuations was especially likely between linked cities. Normalized spatial latitude and longitude coordinates;
California North, δ∗ = 29 km; Massachusetts, δ∗ = 17 km. Fluctuations propagated on a network topology of
minimally connected cities containing a largest connected component.
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direct us towards processes that may give rise to the contagion of population

fluctuations. The geographic concentration of VCFs are strongly tied to the

location of businesses in which they invest. In turn, co-location of target

businesses is driven by reduced infrastructure costs, access to skilled labor

markets, and availability of private equity finance in the form of VCFs them-

selves. Consequently, VCFs can be though of as consumers whose location

is largely determined by resource availability, both tangible and intellectual,

and amplified by an intrinsic positive feedback cycle. This provides some

explanation for the strong, density-driven, spatial clustering of VCFs. But

what of fluctuations? We suggest that rapidly increasing resource availabil-

ity and quality in a city attracts VCFs, leading to population fluctuations

(see Figure 4.2). This influx can exceed local capacity and, through a spill-

over effect, cause subsequent fluctuations in nearby cities; or, in less extreme

cases, simply make neighboring cities a newly attractive prospect for locating.

Resources may spread to neighboring cities and the cycle continues.

We have studied fluctuations in the numbers of VCFs registered in cities.

In order to fully characterize the dynamics of VCFs, we should analyze fluc-

tuations in other measures of venture capital activity. For example, amounts

of funding raised by VCFs registered in each city, the number and value of

deals they make, and head count. It has been shown that firm size using two

measures—the number of employees and receipts—follows particular scaling

laws (Axtell 2001). It would be interesting to see if there are fluctuation

patterns in other measures of VCF activity.

In the introduction we suggested that proximity to target firms makes it

easier for VCFs to monitor its investments. Thus, human mobility may di-
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rectly influence the dependence of VCF dynamics on spatial distance. State-

wide road and rail infrastructure may determine viable locations for VCFs

(and their target firms). It would be interesting to see whether spatial dis-

tance is still relevant if the entire US venture capital industry is treated as

a whole. Larger-scale transportation networks—such as air transportation—

may inform a more appropriate measure of “distance”. Indeed, the structure

of the global air transportation network could not be explained solely by

geographical constraints, and geopolitical factors had to be taken into ac-

count (Guimera et al. 2005). Separation of mobility scales has been noted

before (Brockmann et al. 2006): using marked dollar bills as a proxy, it was

shown that human movement was dominated by short distance travel with

long-range jumps.

The dynamics of spatially-embedded systems is relevant for understand-

ing the spread of disease, the efficient design of power and water distribution

networks, and the growth of cities (Barthelemy 2010). Fluctuations in the

long-term behavior of system components often have functionally important

interpretations (e.g., local power outages). Characterizing the spread of fluc-

tuations will aid with predicting system evolution and may inform system-

specific responses to extreme events.
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4.5 Appendix

This appendix contains a description of the empirical data written by the

data collector, and results for the 7 regions not shown in the main text.

4.5.1 Empirical data

The data used in this analysis were collected by my collaborator (Robert T.

Plant of the School of Business Administration, University of Miami) who

provided the following description of how the raw data were collected.

The term Venture Capital Firm (VCF) has no absolute definition. The

National Venture Capital Association states: “Venture capitalists are pro-

fessional investors who specialize in funding and building young, innovative
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enterprises. Venture capitalists are long-term investors who take a hands-on

approach with all of their investments and actively work with entrepreneurial

management teams in order to build great companies.” However, the in-

vestment profile of many other firms often includes venture capital invest-

ments. Examples include Private Equity Funds, Corporate Venture Capital

Funds, University Venture Capital Funds, Investment Banks, and Commer-

cial Banks.

The data in this study covers 1981-2003 and was collected from the

“Guide to Venture Capital Source” first published in 1970-71 by Capital

Publishing Corporation and edited by Stanley M. Rubel. In 1981 the fifth

edition was edited by Stanley E. Pratt and Jane Morris. From 1984 the ref-

erence book became known within the industry as “Pratt’s Guide to Venture

Capital Sources” (PGVCS) and was edited by Pratt and Morris until 1990

when Morris alone edited the book published by Venture Economics, a divi-

sion of Securities Data Publishing. From 1991 the book has been edited by

a variety of editors. In 1998, Securities Data Publishing became a Division

of Thompson Financial Services.

The data contained in PGVCS was collected by the editors from a variety

of sources. The primary source used by the publisher since 1973 has been the

National Venture Capital Association (NVCA) the premier trade association

that represents the U.S. venture capital industry. Other sources include the

national Association of Investment Companies (NAIC); The National Asso-

ciation of Small Business Investment Companies (NASBIC); Mid-Atlantic

Venture Association (MAVA); and the Western Association of Venture Cap-

italists (WAVC).
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The data in the guide cannot be guaranteed to be complete for a number

of reasons. There may be companies who did not become members of an

association or may have requested that their information be omitted from

the guide. A third factor affecting the inclusion of a VCF stems from the

maturity and number of venture funds held by a firm. VCFs raise capital

for a specific fund and then invest that fund, typically raising and investing

multiple funds simultaneously. Firms in fund raising mode may have decided

not to have their information placed in the guide and not solicit inquiries for

capital when it was unavailable. An additional subtlety is that VCFs can

form as a partnership. They raise capital and then during the investment

period, which may last five or more years, partners may leave, moving on to

another location, in effect dividing the partnership. Eventually the remaining

partners may fold the firm as they either cannot raise further capital or do

not wish to continue the partnership.

4.5.2 Results for 7 additional regions

The following figures show patterns of fluctuations similar to those presented

in the main text—for California North and Massachusetts—for 7 additional

regions: California South, Connecticut, New Jersey, New York, Pennsylvania,

Texas, and Virginia.

California North contains cities with longitude coordinate west of -120◦

and latitude coordinate north of 36◦; and California South as cities with

longitude coordinate east of -120◦ and latitude coordinate south of 36◦. We

separated the US state of California into northern and southern regions for

the following reason: there are high concentrations of cities in northern and

104



southern California separated by a distance of roughly 500 km with very few

cities with registered VCFs in between, and the target businesses for VCFs

in northern California are dominated by high-tech firms (Silicon Valley).

Treating California as a whole, we were still able to identify spatial contagion

of fluctuations, but the distance scales and model parameters resulted from

the composite behavior of contagion in California North and California South

as separate systems.
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Figure 4.6: Fluctuation patterns in California South (cities in California
with coordinates east of longitude -120◦ and south of latitude 36◦). Empirical
data (bars) and model (circles, mean ± std.) compared to two null models.
Deviation from null model 1 (top-left panel) indicates that fluctuations were
localized to distinct spatial scales. Deviation from null model 2 (bottom-left
panel) indicates that fluctuations were temporally coupled between cities
in close proximity. Cities are linked in a hypothetical influence network if
they are separated by less than distance δ. In the top-right panel, we plot
the proportion of cities (solid line) and links (dashed line) involved in the
network as δ is varied. In the bottom-right panel, we show the influence
network where cities are linked if they are separated by less than the critical
inter-city influence distance (here, δ∗ = 9 km).
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Figure 4.7: Fluctuation patterns in Connecticut. Empirical data (bars)
and model (circles, mean ± std.) compared to two null models. Deviation
from null model 1 (top-left panel) indicates that fluctuations were localized
to distinct spatial scales. Deviation from null model 2 (bottom-left panel)
indicates that fluctuations were temporally coupled between cities in close
proximity. Cities are linked in a hypothetical influence network if they are
separated by less than distance δ. In the top-right panel, we plot the propor-
tion of cities (solid line) and links (dashed line) involved in the network as δ is
varied. In the bottom-right panel, we show the influence network where cities
are linked if they are separated by less than the critical inter-city influence
distance (here, δ∗ = 10 km).
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Figure 4.8: Fluctuation patterns in New Jersey. Empirical data (bars) and
model (circles, mean ± std.) compared to two null models. Deviation from
null model 1 (top-left panel) indicates that fluctuations were localized to dis-
tinct spatial scales. Deviation from null model 2 (bottom-left panel) indicates
that fluctuations were temporally coupled between cities in close proximity.
Cities are linked in a hypothetical influence network if they are separated
by less than distance δ. In the top-right panel, we plot the proportion of
cities (solid line) and links (dashed line) involved in the network as δ is var-
ied. In the bottom-right panel, we show the influence network where cities
are linked if they are separated by less than the critical inter-city influence
distance (here, δ∗ = 7 km).
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Figure 4.9: Fluctuation patterns in New York State. Empirical data (bars)
and model (circles, mean ± std.) compared to two null models. Deviation
from null model 1 (top-left panel) indicates that fluctuations were localized
to distinct spatial scales. Deviation from null model 2 (bottom-left panel)
indicates that fluctuations were temporally coupled between cities in close
proximity. Cities are linked in a hypothetical influence network if they are
separated by less than distance δ. In the top-right panel, we plot the propor-
tion of cities (solid line) and links (dashed line) involved in the network as
δ is varied. In the bottom-right panel, we show the influence network where
cities are linked if they are separated by less than the critical inter-city in-
fluence distance (here, δ∗ = 2 km; many links are obscured by overlapping
city-symbols).
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Figure 4.10: Fluctuation patterns in Pennsylvania. Empirical data (bars)
and model (circles, mean ± std.) compared to two null models. Deviation
from null model 1 (top-left panel) indicates that fluctuations were localized
to distinct spatial scales. Deviation from null model 2 (bottom-left panel)
indicates that fluctuations were temporally coupled between cities in close
proximity. Cities are linked in a hypothetical influence network if they are
separated by less than distance δ. In the top-right panel, we plot the propor-
tion of cities (solid line) and links (dashed line) involved in the network as
δ is varied. In the bottom-right panel, we show the influence network where
cities are linked if they are separated by less than the critical inter-city in-
fluence distance (here, δ∗ = 9 km; many links are obscured by overlapping
city-symbols).
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Figure 4.11: Fluctuation patterns in Texas. Empirical data (bars) and
model (circles, mean ± std.) compared to two null models. Deviation from
null model 1 (top-left panel) indicates that fluctuations were localized to dis-
tinct spatial scales. Deviation from null model 2 (bottom-left panel) indicates
that fluctuations were temporally coupled between cities in close proximity.
Cities are linked in a hypothetical influence network if they are separated
by less than distance δ. In the top-right panel, we plot the proportion of
cities (solid line) and links (dashed line) involved in the network as δ is var-
ied. In the bottom-right panel, we show the influence network where cities
are linked if they are separated by less than the critical inter-city influence
distance (here, δ∗ = 106 km).
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Figure 4.12: Fluctuation patterns in Virginia. Empirical data (bars) and
model (circles, mean ± std.) compared to two null models. Deviation from
null model 1 (top-left panel) indicates that fluctuations were localized to dis-
tinct spatial scales. Deviation from null model 2 (bottom-left panel) indicates
that fluctuations were temporally coupled between cities in close proximity.
Cities are linked in a hypothetical influence network if they are separated
by less than distance δ. In the top-right panel, we plot the proportion of
cities (solid line) and links (dashed line) involved in the network as δ is var-
ied. In the bottom-right panel, we show the influence network where cities
are linked if they are separated by less than the critical inter-city influence
distance (here, δ∗ = 71 km).
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Chapter 5

Rapidly detecting disorder in

rhythmic biological signals

We consider the use of a running measure of power spectrum disorder to

distinguish between the normal sinus rhythm of the heart and two forms of

cardiac arrhythmia: atrial fibrillation and atrial flutter. This spectral entropy

measure is motivated by characteristic differences in the power spectra of beat

timings during the three rhythms. We plot patient data derived from ten-

beat windows on a “disorder map” and identify rhythm-defining ranges in the

level and variance of spectral entropy values. Employing the spectral entropy

within an automatic arrhythmia detection algorithm enables the classification

of periods of atrial fibrillation from the time series of patients’ beats. When

the algorithm is set to identify abnormal rhythms within 6 s it agrees with

85.7% of the annotations of professional rhythm assessors; for a response time

of 30 s this becomes 89.5%, and with 60 s it is 90.3%. The algorithm provides

a rapid way to detect atrial fibrillation, demonstrating usable response times

as low as 6 s. Measures of disorder in the frequency domain have practical

significance in a range of biological signals: the techniques described in this
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paper have potential application for the rapid identification of disorder in

other rhythmic signals.

5.1 Introduction

Cardiovascular diseases are a group of disorders of the heart and blood vessels

and are the largest cause of death globally (World Health Organization 2007).

An arrhythmia is a disturbance in the normal rhythm of the heart and can be

caused by a range of cardiovascular diseases. In particular, atrial fibrillation

is a common arrhythmia affecting 0.4% of the population and 5%–10% of

those over 60 years old (Kannel et al. 1982; Cairns & Connolly 1991); it

can lead to a very high (up to 15-fold) risk of stroke (Bennett 2002). Heart

arrhythmias are thus a clinically significant domain in which to apply tools

investigating the dynamics of complex biological systems (Wessel et al. 2007).

Since the pioneering work of Akselrod et al. (1981) on spectral aspects of

heart rate variability, such approaches have tended to focus on frequencies

lower than the breathing rate. By contrast, we develop a spectral entropy

measure to investigate heart rhythms at higher frequencies, similar to the

heart rate itself, that can be meaningfully applied to short segments of data.

Conventional physiological measures of disorder, such as approximate en-

tropy (ApEn) and sample entropy (SampEn), typically consider long time

series as a whole and require many data points to give useful results (Grass-

berger & Procaccia 1983; Pincus 1991; Richman & Moorman 2000). With

current implant technology and the increasing availability of portable elec-

trocardiogram (ECG) devices (Bai et al. 1999; Anlike et al. 2004), a rapid

approach to fibrillation detection is both possible and sought after. Though
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numerous papers propose rapid methods for detecting atrial fibrillation us-

ing the ECG (Xu et al. 2002, 2007; Isa et al. 2007), less work has been

done using only the time series of beats or intervals between beats (RR in-

tervals). In one study, Tateno and Glass use a statistical method comparing

standard density histograms of ∆RR intervals (Tateno & Glass 2000, 2001).

The method requires around 100 intervals to detect a change in behavior and

thus may not be a tool suitable for rapid response.

Measures of disorder in the frequency domain have practical significance

in a range of biological signals. The irregularity of electroencephalography

(EEG) measurements in brain activity, quantified using the entropy of the

power spectrum, has been suggested to investigate localized desynchroniza-

tion during some mental and motor tasks (Inouye et al. 1991; Rosso 2007).

Thus, the techniques described here have potential application for the rapid

identification of disorder in other rhythmic signals.

In this paper we present a technique for quickly quantifying disorder in

high frequency event series: the spectral entropy is a measure of disorder

applied to the power spectrum of periods of time series data. By plotting pa-

tient data on a disorder map, we observe distinct thresholds in the level and

variance of spectral entropy values that distinguish normal sinus rhythm from

two arrhythmias: atrial fibrillation and atrial flutter. We use these thresh-

olds in an algorithm designed to automatically detect the presence of atrial

fibrillation in patient data. When the algorithm is set to identify abnormal

rhythms within 6 s it agrees with 85.7% of the annotations of professional

rhythm assessors; for a response time of 30 s this becomes 89.5%, and with

60 s it is 90.3%. The algorithm provides a rapid way to detect fibrillation,
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demonstrating usable response times as low as 6 s and may complement other

detection techniques.

The structure of the paper is as follows. Section 5.2 introduces the data

analysis and methods employed in the arrhythmia detection algorithm, in-

cluding a description of the spectral entropy and disorder map in the context

of cardiac data. The algorithm itself is presented in Section 5.3, along with

results for a range of detection response times. In Section 5.4, we discuss

the results of the algorithm and sources of error, and compare our method

to other fibrillation detection techniques. An outline of further work is pre-

sented in Section 5.5, with a summary of our conclusions closing the paper

in Section 5.6.

5.2 Data Analysis

After explaining how we symbolize cardiac data in Section 5.2.1, the spectral

entropy measure is introduced (Section 5.2.2) and appropriate parameters

for cardiac data are selected (Section 5.2.3). We then show how the various

rhythms of the heart can be identified by their position on a disorder map

defined by the level and variance of spectral entropy values (Section 5.2.4).

Data were obtained from the MIT-BIH atrial fibrillation database (afdb),

which is part of the physionet resource (Goldberger et al. 2000). This

database contains 299 episodes of atrial fibrillation and 13 episodes of atrial

flutter across 25 subjects (henceforth referred to as “patients”), where each

patient’s Holter tape is sampled at 250 Hz for 10 h. The onset and end of

atrial fibrillation and flutter were annotated by trained observers as part of

the database. The timing of each QRS complex (denoting contraction of the
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ventricles and hence a single, “normal”, beat of the heart) had previously

been determined by an automatic detector (Laguna et al. 1997).

5.2.1 Symbolizing cardiac data

We convert event data into a binary string, a form appropriate for use in the

spectral entropy measure. The beat data is an event series: a sequence of

pairs denoting the time of a beat event and its type. We categorize normal

beats as N and discretize time into short intervals of length τ (for future

reference, symbols are collected with summarizing descriptions in Table 5.1).

Each interval is categorized as Ø or N depending on whether it contains

no recorded event or a normal beat, respectively. This yields a symbolic

string of the form ...ØØØNØØNØNØØØN.... This symbolic string can

be mapped to a binary sequence (N → 1, Ø → 0). This procedure is shown

schematically in Figure 5.1. Naturally, this categorization can be extended

to more than two states and applied to other systems. For example, ectopic

beats (premature ventricular contractions) could be represented by V to

yield a symbolic string drawn from the set {Ø,N,V }. An additional map

could then be used to extract a binary string representing the dynamics of

ectopic beats.

5.2.2 Spectral entropy

We now present a physiological motivation for using a measure of disorder

in the context of cardiac dynamics, followed by a description of the spectral

entropy measure. Following Bennett (2002), atrial fibrillation is character-

ized by the physiological process of concealed conduction in which the initial
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Window Symbol Definition Typical value Overlap Typical value

Spectral entropy α Lτ 6 s a 1.5 s
Variance β Ma = MLτ/4 6 s, 30 s, 60 s b 1.5 s

Modal smoothing γ 2β + b = (2M + 1)Lτ/4 12 s, 60 s, 120 s c 1.5 s

Table 5.1: Summary of arrhythmia detection algorithm window and overlap symbols. A full description of the
spectral entropy and variance windows is given in the Data Analysis section, Section 5.2, of the text; the modal
smoothing window is described in the Algorithm section, Section 5.3. Cardiac data in the MIT-BIH atrial fibrillation
database is sampled at intervals of τ = 30 ms. The number of intervals contained in the spectral entropy window,
L, is chosen for each patient such that the spectral entropy window is expected to contain ten beats. In the variance
window, M represents the number of spectral entropy values used in finding the variance; for response times 6 s, 30
s, 60 s, we consider M equal to 4, 20, 40, respectively. Specifying τ , L and M fixes the remaining parameters. We
define overlap parameter a = α/4. For simplicity, we set c = b = a.
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5) ALGORITHM OUTPUT

3)  SPECTRAL ENTROPY SERIES

4)  PREDICTION SERIES

1)  EVENT DATA

2)  BINARY SERIES

...  0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0  ...

...  0.77      0.75 0.78      0.80      0.82      0.88      0.89      0.90      0.89      0.87      0.88  ...

...    N          N N          N AF AF AF AF AF          N AF   ...

...    N’ N’ N’ N’ N’ N’ N’ AF’ AF’ AF’ AF’ ...

Spectral entropy window:

Variance window:

Modal smoothing window:

a

... ...N            N               N             N      N       N      N       N   N   N

Discretize with sampling interval, ;  Mapping to binary: 1, 0τ N Ø

b

c

α

β

γ

Figure 5.1: Schematic of cardiac data analysis and the automatic arrhyth-
mia detection algorithm. A full description of the data analysis (stages 1-3)
is given in the Data Analysis section, Section 5.2, of the text; the remain-
ing steps (stages 4-5) are described in the Algorithm section, Section 5.3.
MIT-BIH atrial fibrillation database event data (stage 1) are discretized at
sampling interval τ , then mapped to give a binary series representing the dy-
namics of regular beats N (stage 2). A sequence of spectral entropy windows,
of length α, is applied with overlap parameter a to obtain a series of spectral
entropy values (stage 3). Variance windows, of length β with overlap param-
eter b, are applied to obtain a series of variance values. Threshold conditions
in the level and variance of spectral entropy values allows for the classifica-
tion of periods of atrial fibrillation (AF) and other rhythms (N), typically
normal sinus rhythm (stage 4). Finally, the most frequent prediction in each
modal smoothing window, of length γ with overlap parameter c, is identified
{AF′, N′} to obtain the final algorithm output (stage 5). For definitions and
typical values for algorithm parameters, see Table 5.1.
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regular electrical impulses from the atria (upper chamber of the heart) are

conducted intermittently by the atrioventricular node to the ventricles (lower

chamber of the heart). This process is responsible for the irregular ventricular

rhythm that is observed. Atrial flutter has similar causes to atrial fibrilla-

tion but is less common; incidences of flutter can degenerate into periods of

fibrillation. Commonly, alternate electrical waves are conducted to the ven-

tricles, maintaining the initial regular impulses originating from the atria.

This results in a rhythm with pronounced regularity. Normal sinus rhythm

can be characterized by a slightly less regular beating pattern occurring at

a slower rate compared to atrial flutter. Example electrocardiograms for the

three rhythms are shown in the boxed-out areas of Figure 5.3, below.

Given these physiological phenomena, the spectral entropy can be used

as a natural measure of disorder, enabling one to distinguish between these

three rhythms of the heart. Presented with a possibly very short period of

heart activity one can create a length-L, duration-Lτ , binary string. One

then obtains the corresponding power spectrum of this period of heart ac-

tivity using the discrete Fourier transform (Cooley & Tukey 1965). Given a

(discrete) power spectrum with the ith frequency having power Ci, one can

define the “probability” of having power at this frequency as

pi =
Ci

∑

i Ci
. (5.1)

When employing the discrete Fourier transform, the summation runs from

i = 1 to i = L
2
. One can then find the entropy of this probability distribution

[with i having the same summation limits as in Equation (5.1)]:

H =
∑

i

−pi log2 pi. (5.2)
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Breaking the time series into many such blocks of duration Lτ , each with

its own spectral entropy, thus returns a time series of spectral entropies.

Note that this measure is not cardiac specific and can be applied to any

event series. For example, a sine wave having period an integer fraction of

Lτ will be represented in Fourier space by a delta function (for Lτ → ∞)

centered at its fundamental frequency; this gives the minimal value for the

spectral entropy of zero. Other similar frequency profiles, with power located

at very specific frequencies, will lead to correspondingly low values for the

spectral entropy. By contrast, a true white noise signal will have power at

all frequencies, leading to a flat power spectrum. This case results in the

maximum value for the spectral entropy:

Hmax = log2

(

L

2

)

. (5.3)

As will be discussed in the following section, H can be normalized by Hmax

to give spectral entropy values in the range [0,1].

Note that analytical tools relying on various interbeat intervals have been

devised in the past (e.g., Tateno & Glass 2000, 2001; Schulte-Frohlinde et al.

2002; Lerma et al. 2007). Here, we demonstrate how our measure relates to

those studies. Any series of events can be represented by

f(t) =
∑

k

δ(t − tk), (5.4)

where tk is the time when an event (beat) occurs. The corresponding power

spectrum is, then,

P (ω) ∝
∑

k,k′

cos(ω | tk − tk′ |). (5.5)
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The spectral entropy is, by definition,

Hcont =
∫

dω p(ω) log p(ω), (5.6)

where p(ω) = P (ω)/
∫

dω′P (ω′). We therefore see that Equation (5.6) de-

pends on all of the intervals between any two events [c.f. Equation (5.5)].

This is in contrast to studies on the distribution of beat-next-beat intervals

in Schulte-Frohlinde et al. 2002. We believe that this generalization enriches

the structure captured in the short-time segments and thus allows for the

shortening of the detection response time in our arrhythmia detection algo-

rithm. We finally note that since the spectral entropy depends only on the

shape of the power spectrum, it is relatively insensitive to small, global, shifts

in the spectrum of the signal.

5.2.3 Parameter selection

We now introduce parameters for the spectral entropy measure and select

values appropriate for cardiac data. The sampling interval acts like a low

pass-filter on the data since all details at frequencies above 1/(2τ) Hz, the

upper frequency limit, are discarded (de Boer et al. 1984). The sampling

interval must be sufficiently small such that no useful high-frequency compo-

nents are lost. We choose a sampling interval τ = 30 ms, since processes like

the heart beat interval, breathing and blood pressure fluctuations occur at

much lower frequencies. The upper frequency limit in the power spectrum is

consistent with the inclusion of all dominant and subsidiary frequency peaks

present during atrial fibrillation (Ng & Goldberger 2007).

We call the duration over which the power spectrum is found, and hence

a single spectral entropy value is obtained, the spectral entropy window: α =
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Lτ (L is the number of sampling intervals required). With our value for τ , the

shortest spectral entropy window giving sufficient resolution in the frequency

domain for cardiac data is found for L around 200, α ∼ 6 s. This value for α

is equivalent to approximately ten beats on average over the entire afdb. It

is consistent with previous work on animal hearts looking at the minimum

window length required to determine values for the dominant frequencies

present during atrial fibrillation (Everett et al. 2001). To take into account

the heterogeneity of patients’ resting heart rates (HRs), we fix τ and use an L

value for each patient such that there are on average 10 beats in each spectral

entropy window. Thus, α = L(HR)τ = α(HR). All subsequent parameters

that are determined by L will similarly be a function of the average heart rate;

we will henceforth drop the HR notation for clarity, with the dependence

on average heart rate understood implicitly. Patients with higher average

heart rate require smaller L, and therefore have a shorter spectral entropy

window. By invoking individual values for L, the maximum spectral entropy

for each patient is constrained to a particular value: Hmax [c.f. Equation

(5.3)]. To make spectral entropy values comparable, we normalize the basic

spectral entropy values for each patient [Equation (5.2)] by their theoretically

maximal spectral entropy value. The spectral entropy can thus take values in

the range [0,1]. In choosing L near its minimally usable value, we necessarily

have a small number of beats compared to the window length α. In such

cases, a window shape having a low value for the equivalent noise bandwidth

(ENBW) is preferable (Harris 1978; Nuttall 1981). The ENBW is a measure

of the noise associated with a particular window shape: it is defined as the

width of a fictitious rectangular filter such that power in that rectangular
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band is equal to the actual power of the signal. The condition for low ENBW

is satisfied by the rectangular window. To maximize the available data, a

sequence of overlapping rectangular windows separated by a time a is used.

This results in a series of spectral entropy values also separated by a. We

follow the convention of using adjacent window overlap of 75% (Harris 1978),

leading to a window separation time: a = Lτ/4. This gives a typical value

for a of 1.5 s. A summary of window and overlap parameters is presented in

Table 5.1.

Figure 5.2 illustrates the spectral entropy measure applied to patient

08378 from the afdb. We identify three distinct levels in the spectral entropy

value corresponding to the three rhythms of the heart assessed in the anno-

tations. Beating with a relatively regular pattern, which can be associated

with normal sinus rhythm, sets a baseline for the spectral entropy. The ir-

regularity associated with fibrillation causes an increase in the value, with

the pronounced regularity of flutter identifiable as a decrease in the spectral

entropy. We note that power spectrum profiles in frequency space should

remain qualitatively similar for a given rhythm type, regardless of the un-

derlying heart rate. For example, periodic signals can be characterized by

peaks at constituent frequencies, independent of the beat production rate;

similarly, highly disordered signals can be consistently identifiable by their

flat power spectra. This confers a significant advantage over methods relying

solely on the heart rate. We find considering only the instantaneous heart

rate and its derivatives to be insufficient in consistently distinguishing be-

tween sinus rhythm, fibrillation and flutter; this point is addressed further in

the Discussion section (Section 5.4.1).
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Figure 5.2: Spectral entropy time series (top), professional rhythm annota-
tion (middle), and arrhythmia detection algorithm prediction (bottom) for
patient 08378 from the MIT-BIH atrial fibrillation database. Event data is
sampled at 30-ms intervals approximately 200 times such that there are on
average ten beats per spectral entropy window. Each window, of length 6 s
for a typical patient, contributes one value of the spectral entropy; windows
have a typical overlap of 1.5 s. For the rhythm annotation and algorithm
prediction: AF denotes atrial fibrillation, AFL denotes atrial flutter, and
N represents all other rhythms. The algorithm prediction (primed symbols
omitted for clarity) demonstrates good agreement with professional annota-
tions; shown for a response time of 30 s, thresholds: Γfib = 0.84, Γfl = 0.70
and Φfib = 0.018.
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5.2.4 Cardiac disorder map

Having identified differences in the level of the spectral entropy measure cor-

responding to different rhythms of the heart, we suggest that there should

be a similar distinction in the variance of a series of spectral entropy values.

We propose that the fibrillating state may represent an upper limit to the

spectral entropy measure; once this state is reached, variations in the mea-

sure’s value are unlikely until a new rhythm is established. By contrast, the

beating pattern of normal sinus rhythm is not as disordered as possible and

can therefore show variation in the spectral entropy values taken. Inspecting

the data, one frequently observes transitions between periods of very regular

and more irregular (though still clearly sinus) beating. Thus, normal sinus

rhythm will naturally explore more of the spectral entropy value range than

atrial fibrillation, which is consistently irregular in character (including some

dominant frequencies, see Ng & Goldberger 2007). Furthermore, in defin-

ing the spectral entropy window to be constant for a given patient, some

dependence on the heart rate is retained, despite accounting for each pa-

tient’s average heart rate. This dependence can cause additional harmonics

to appear in the power spectrum, increasing the variation of spectral en-

tropy values explored during normal sinus rhythm. Last, windows straddling

transitional periods of the heart rate will also demonstrate atypical power

spectra, further compounding the increase in the variance when comparing

normal sinus rhythm to atrial fibrillation. We do not conjecture on (and do

not observe) a characteristic difference in the variance of spectral entropy

values for atrial flutter, relying on the spectral entropy level to distinguish
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Figure 5.3: Cardiac disorder map for all 25 patients in the MIT-BIH atrial
fibrillation database (afdb). Boxed-out area: example electrocardiograms for
normal sinus rhythm, atrial fibrillation and atrial flutter, taken from patient
04936. Spectral entropy values are obtained from windows of event data ex-
pected to contain ten beats; data is sampled at 30-ms intervals. For a typical
patient, each spectral entropy window is around 6 s in length and has an
overlap with adjacent windows of 1.5 s. For each point on the disorder map,
the standard deviation and average spectral entropy level is calculated from
M adjacent spectral entropy values: we call this the variance window, β.
Here, we have M equal to 20 and so β has a typical length of 30 s; β repre-
sents the response time of the algorithm. Normalized frequency histograms
are disorder map projections onto the relevant axes. Rhythm assessments,
{N, AF, AFL}, are provided in the afdb. Atrial fibrillation is situated in the
upper left of the disorder map, consistent with having a high value for the
spectral entropy and a low value for the variance. Atrial flutter has a lower
average value for the spectral entropy, as expected. Fibrillation thresholds
for the arrhythmia detection algorithm are set at Γfib = 0.84 for the spectral
entropy level and Φfib = 0.018 for the standard deviation, as indicated on
the disorder map.
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the arrhythmia from fibrillation and normal sinus rhythm.

In theory, the spectral entropy can take values in the range [0,1]. Possible

variances in sequences of spectral entropy values then lie in the range [0,1
4
].

These two ranges determine the two-dimensional cardiac disorder map. In

practice, we plot the standard deviation rather the variance for clarity, and

so rhythm thresholds are given in terms of the standard deviation. Due to

finite time and windowing considerations, the spectral entropy is restricted

to a subset of values within its possible range. We attempt to find limits

in the values that the spectral entropy can take by applying the measure to

synthetic event series: a periodic series with constant inter-beat interval, and

a random series drawn from a Poisson probability distribution with a mean

firing rate. For a heart rate range of 50 beats per minute (bpm) to 200 bpm

in 1-bpm increments we obtain 150 synthetic time series for the periodic and

Poisson cases, respectively. The average spectral entropy value over the 150

time series in the periodic case is 0.67±0.04; the average value in the Poisson

case is 0.90±0.01. By assuming the maximum variance to occur in a rhythm

that randomly changes between the periodic and Poisson cases with equal

probability, an approximate upper bound for the standard deviation can be

calculated: using the two average spectral entropy values in the definition of

the standard deviation, we find the upper bound to be approximately 0.115.

Figure 5.3 illustrates the cardiac disorder map for all 25 patients com-

prising the afdb. The standard deviation is calculated from M adjacent

spectral entropy values (separated by a), corresponding to a duration of

β = Ma = MLτ/4; we call β the variance window. In this case, we have

M equal to 20 and so β has a length of 30 s for a typical patient. We will
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see in the following section that β sets the response time of the arrhythmia

detection algorithm. The smallest useable number for M is 4, corresponding

to the rapid response case where β is typically 6 s. We have M equal to

40 for the case where β is typically 60 s. In Figure 5.3, each value of the

standard deviation is plotted against the average value of the spectral en-

tropy within the variance window, and is colored according to the rhythm

assessment provided in the annotations. As with spectral entropy windows,

variance windows have an overlap, b. For simplicity, we set b = a, giving a

typical value of 1.5 s. Note that b can take any integer multiple of a, though

doing so does not alter the results substantially.

One observes atrial fibrillation to be situated in the upper left of the

disorder map, consistent with having a high value for the spectral entropy

and a low value for the variance. Atrial flutter has a lower average value for

the spectral entropy, as expected. For the given case with β typically 30 s,

we determine fibrillation to exhibit spectral entropy levels above Γfib = 0.84,

with flutter present below Γfl = 0.70. A standard deviation threshold can

be inferred at around Φfib = 0.018, with the majority of fibrillating points

falling below that value. Although beyond the expository purpose of this

paper, we note that these approximate thresholds can be further optimized

using, for example, discriminant analysis (McLachlan 1992). Disorder maps

for the three detection response times (6 s, 30 s, 60 s) are qualitatively

similar; increasing the length of the variance window improves the separation

of rhythms in the disorder map at a cost of requiring more data per point.

From these observations, we hypothesize threshold values in the spectral

entropy level and variance that distinguish the two arrhythmias from normal

129



sinus rhythm. In the following section, thresholds drawn from the disorder

map are used in an arrhythmia detection algorithm.

5.3 Algorithm

In this section, we present a description of the automatic arrhythmia detec-

tion algorithm (Section 5.3.1), followed by results for a range of detection

response times (Section 5.3.2).

5.3.1 Arrhythmia detection algorithm

The arrhythmia detection algorithm uses thresholds in the level and variance

of spectral entropy values observed in the cardiac disorder map to automati-

cally detect and label rhythms in patient event series data. The afdb contains

significantly fewer periods of atrial flutter compared to atrial fibrillation and

normal sinus rhythm (periods of flutter total 1.27 h, whereas periods of fibril-

lation total 91.59 h), the typical length of periods of flutter is of the order tens

of seconds. Of the eight patients annotated as having flutter, only patients

04936 and 08378 have periods of flutter long enough (i.e., > β) for analysis by

the algorithm. For this reason we do not include here the flutter prediction

method of the algorithm, although extensions including flutter follow a sim-

ilar principle and are simple in practice to implement. Other studies using

the afdb (e.g., Tateno & Glass 2000, 2001) restrict themselves to methods

differentiating only between fibrillation and normal sinus rhythm. Additional

comments on the practicality of detecting atrial flutter and selected results

for flutter will be given in the Discussion section (Section 5.4.1).

The five stages of the algorithm are shown in Figure 5.1. The first three

130



stages have been covered in depth as part of the Data Analysis section, but

we include a brief summary here for completeness. We first obtain a binary

string representing the dynamics of the heart for a given patient by discretiz-

ing the physionet data every τ = 30 ms (stage 1 to stage 2). In stage 3, the

spectral entropy measure is applied for windows of duration α = Lτ , with

L chosen for each patient such that there are on average ten beats within

the spectral entropy window, giving α as 6 s for a typical patient. Using an

overlap parameter a (typically 1.5 s), leads to a series of spectral entropy

values separated in time by this amount. Given no prior knowledge of the

provided rhythm assessments, we calculate the standard deviation and aver-

age magnitude of M spectral entropy values in variance windows of length

β = Ma preceding a given time point. We use the example case of M equal

to 20 (giving β as 30 s for a typical patient). The level and standard devia-

tion thresholds for atrial fibrillation are set consistent with values obtained

from the cardiac disorder map, for this case we determine Γfib = 0.84 and

Φfib = 0.018. Stage 4 generates preliminary predictions for the rhythm state

of the heart: we denote as fibrillating (AF) instances where the spectral en-

tropy level is greater than Γfib and the standard deviation is less than Φfib,

with all other combinations considered to be normal sinus rhythm (N)1. Set-

ting the overlap of variance windows such that b = a, we obtain a string of

rhythm predictions drawn from the set {AF, N} and separated in time by b.

Finally, in stage 5 we apply a rudimentary smoothing procedure to the

initial string of rhythm predictions. For a particular prediction, we consider

1More correctly, we mean nonfibrillating, but we find the overwhelming majority
rhythm to be normal sinus rhythm.
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a preceding period γ = 2β + b = (2M + 1)Lτ/4, leading in this example to

a typical length for γ of 61.5 s. We find the modal prediction: the predic-

tion {AF, N} occurring most frequently in γ, labeling the modal prediction

{AF′, N′}. We call γ the modal smoothing window. In this form, we under-

stand the windows β and γ as setting the response time of the algorithm:

β is defined in terms of the number of preceding spectral entropy values re-

quired for a given prediction; for γ to register a change in rhythm, over half of

the predictions must suggest the new rhythm. The response time is then γ
2
,

which is approximately equal to β. We have the modal smoothing windows

overlapping with parameter c = b = a. This results in a final time series of

predictions and constitutes the output of the arrhythmia detection algorithm

for a given patient. An example of the algorithm output for patient 08378

(including a threshold for atrial flutter) is shown in Figure 5.2.

We apply the above steps, comprising the three data windows (α, β, γ),

to each patient in the afdb. Specifying τ , L and M fixes the remaining pa-

rameters, their exact magnitude determined by L. A summary of windowing

symbols can be found in Table 5.1. Values for the atrial fibrillation threshold

parameters (Γfib and Φfib) are kept the same for each patient for a given

response time. The results obtained from the algorithm are described in the

following section.

5.3.2 Algorithm results

We now present the results of the cardiac arrhythmia detection algorithm

for atrial fibrillation. The following window parameters were used: τ is set

to 30 ms, L is chosen such that α is expected to contain 10 beats, and M
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is set to 20, windows have overlap parameters c = b = a = α
4

(for typ-

ical patients in the afdb, α ∼ 6s, β ∼ 30s, γ ∼ 61.5s, and a ∼ 1.5s).

Threshold values for fibrillation are set at Γfib = 0.84 for the spectral en-

tropy level and Φfib = 0.018 for the standard deviation. Each prediction

produced by the algorithm (denoted by a primed symbol) is compared with

the rhythm assessment documented in the database and can be classified into

one of four categories (Hulley & Cumming 1988): true positive (TP), AF is

classified as AF′; true negative (TN), non-AF is classified as non-AF′; false

negative (FN), AF is classified as non-AF′; false positive (FP), non-AF is

classified as AF′. Percentages of these quantities for each patient and for the

entire afdb are given in Table 5.2. Overall, we obtain a predictive capabil-

ity (assessed using the percentage of predictions agreeing with the provided

annotations) of 89.5%. The sensitivity and specificity metrics are defined by

TP/(TP+FN) and TN/(TN+FP), respectively. The predictive value of a

positive test (PV+) and the predictive value of a negative test (PV−) are de-

fined by TP/(TP+FP) and TN/(TN+FN), respectively. These, and results

for other values of β are given in Table 5.3.

In repeating the algorithm with different values for the variance window,

shorter β represents a quicker response time. We obtain for each β a new dis-

order map to determine the relevant threshold values. For the rapid response

case, β typically 6 s, we alter the fibrillating thresholds in the arrhythmia

detection algorithm to be Γfib = 0.855 and Φfib = 0.016; we find a predictive

capability of 85.7%. With β typically 60 s, the fibrillating thresholds become

Γfib = 0.84 and Φfib = 0.019; the predictive capability is 90.3%.
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Patient TP (%) TN (%) FN (%) FP (%)

00735 0.8 85.0 0.0 14.2
03665 29.8 30.4 37.8 2.0
04015 0.5 92.4 0.2 6.9
04043 8.9 76.5 13.1 1.5
04048 0.4 98.8 0.7 0.1
04126 3.3 78.3 0.6 17.8
04746 53.6 43.8 0.8 1.8
04908 7.0 88.2 1.6 3.2
04936 43.1 19.0 36.3 1.6
05091 0.0 85.6 0.2 14.2
05121 56.9 30.5 8.4 4.2
05621 0.9 94.9 0.4 3.8
06426 92.7 1.9 3.1 2.3
06453 0.4 97.7 0.7 1.2
06995 42.8 47.1 3.0 7.1
07162 100.0 0.0 0.0 0.0
07859 83.1 0.0 16.9 0.0
07879 53.3 38.1 8.5 0.1
07910 13.5 85.7 0.5 0.3
08215 80.0 19.7 0.3 0.0
08219 18.3 59.8 3.8 18.1
08378 20.0 77.3 2.4 0.3
08405 68.9 28.4 2.7 0.0
08434 3.8 91.6 0.2 4.4
08455 65.6 31.5 2.9 0.0

Total 36.1 53.4 6.5 4.0

True: 89.5% False: 10.5%

Table 5.2: Results of the arrhythmia detection algorithm using data in the
MIT-BIH atrial fibrillation database. For the parameters used, see Algorithm
results section (Section 5.3.2). Algorithm predictions (primed symbols) are
compared to annotated rhythm assessments. TP, AF is classified as AF′;
TN, non-AF is classified as non-AF′; FN, AF is classified as non-AF′; FP,
non-AF is classified as AF′.
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M β True (%) Sens. (%) Spec. (%) PV+ (%) PV− (%)

4 6s 85.7 82.1 88.4 83.9 87.0
20 30s 89.5 84.8 92.9 89.8 89.2
40 60s 90.3 83.6 95.2 92.8 88.7

Table 5.3: Summary of results for variance windows of different lengths.
Length is set by parameter M = 4, 20, 40, giving durations for typical
patients: β ∼ 6s, 30s, 60s, respectively. Shorter β indicates a quicker
response time. Metrics defined as, sensitivity, TP/(TP+FN); specificity,
TN/(TN+FP); PV+, TP/(TP+FP); PV−, TN/(TN+FN).

5.4 Discussion

We begin with an exposition of the results presented in the previous section

and the effects of different parameter values on the output of the arrhythmia

detection algorithm. This is followed by a discussion, with reference to the

electrocardiograms provided as part of the afdb, of disagreements between

the provided rhythm annotations, measures relying solely on the heart rate,

and the predictions of our algorithm (Section 5.4.1). Having shown that some

of the annotations may be unreliable, we comment on situations where the

algorithm may still present incorrect predictions (Section 5.4.2). The bene-

fits of the spectral entropy measure compared to other fibrillation detection

methods is then given (Section 5.4.3). We close the section with a discussion

of the systematic windowing errors present in our procedure (Section 5.4.4).

Instances of atrial fibrillation constitute approximately 40% of the afdb.

If we consider a null-model where we constantly predict normal sinus rhythm,

we would expect a predictive capability of around 60%. In Table 5.3, we ob-

serve an improvement in the predictive capability of the detection algorithm

when the length of the variance window, β, is increased from 6 s (85.7%)
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to 60 s (90.3%) for a typical patient. The choice of shorter β improves the

response time of the algorithm by requiring less data per prediction; values

for β less than 6 s do not incorporate enough data to give meaningful results.

Increasing β beyond 30 s improves the predictive capability very little. This

suggests that additional factors, independent of the specific parameters cho-

sen here, need to be considered. Results in Table 5.2 for the case β typically

30 s indicates an overall predictive capability of 89.5%. For individual pa-

tients, the predictive capability ranges from 60.2% (patient 03665) to 100%

(patient 07162). To explain this variation, we investigate the form of patient

ECGs during periods of disagreement between annotation and prediction.

Examples of the ECGs referred to in Sections 5.4.1 and 5.4.2 are included in

Appendix 5.1.

5.4.1 Disagreements with annotations

Rhythm assessments have been questioned before (Tateno & Glass 2000,

2001); here, we give explicit examples where we believe the ECGs to sug-

gest a rhythm different from that given by the annotation. We observe in

the ECGs of patients 08219 and 08434 periods of atrial fibrillation that we

believe to have been missed in the annotations but are correctly identified

by our detection algorithm.2 Cases such as these serve to negatively impact

the results of the algorithm unfairly; however, we note that such instances

comprise a small proportion of the afdb. Atrial flutter may have been misan-

notated in patients 04936 and 08219;3 in particular, two considerable periods

2For AF annotated as N in patient 08219, see time 11 880 s; for patient 08434, see time
9504 s in Appendix 5.1.

3For AFL annotated as N in patient 04936, see time 7347 s; for patient 08219, see time
10 090 s in Appendix 5.1.
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of flutter may have been annotated incorrectly in patient 04936. This un-

reliability of rhythm assessment, compounded with the limited number of

periods of atrial flutter in the database, prevents us from drawing meaning-

ful quantitative conclusions regarding the success of the detection algorithm

in identifying flutter. Despite this, we believe that the spectral entropy is in

principle still capable of identifying flutter (see Figure 5.2). Returning to the

two patients with significant periods of flutter, we run the algorithm with the

inclusion of a threshold for atrial flutter motivated by each patient’s individ-

ual disorder map: Γfl (other parameters as per the Algorithm results section

with M = 20). For patient 08378 with Γfl = 0.70, we find 86.3% agreement

with the annotations for flutter; for patient 04936 with Γfl = 0.81, we find

66.9% agreement, bearing in mind the points raised above.

Consideration of ECGs demonstrates the inability of measures relying

solely on the heart rate and its derivatives to consistently distinguish between

fibrillation, flutter and other rhythms. Atrial fibrillation is characteristically

associated with an elevated heart rate (100–200 bpm) (Bennett 2002); atrial

flutter exhibits an even higher heart rate (>150 bpm) with a sharp transition

from normal sinus rhythm. This expected behavior, whilst found to hold

qualitatively for the majority of patients, fails during large periods for patient

06453 and is completely reversed for patient 08215.4 The resting heart rate is

also found to differ dramatically between patients in the afdb. The spectral

entropy, being less susceptible to variations in the heart rate, is better suited

to form the basis of a detection algorithm compared to a measure relying

4For patient 06453, see, for example, time 521 s; for patient 08215, compare times
4234 s and 30 000 s to the instantaneous HR.
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solely on heart rate (for discussions on nonstationarities in heart rate time

series, see Bernaola-Galvan et al. 2001; Cammarota & Rogora 2005).

5.4.2 Other rhythms

The unreliability of parts of the annotations still does not account for all

false predictions produced by the detection algorithm. We suggest the pres-

ence of other rhythms within the afdb to be an additional factor that needs

to be considered. Table 5.3 shows the sensitivity metric to be consistently

lower for all values of β, suggesting a bias towards false negatives (FNs occur

when AF is classified as non-AF′). FNs total 6.5% for β typically 30 s in

Table 5.2, and comprise 36.3% of predictions for patient 04936. Given our

requirement in the detection algorithm for periods that are classed as AF to

satisfy both a spectral entropy level and variance condition, FNs are most

likely to arise when one threshold condition fails to be met. Cases where

the variance threshold is not satisfied may be associated with the physiologi-

cal phenomena of fib-flutter and paroxysmal atrial fibrillation, and would be

located right of the standard deviation threshold on the disorder map (Fig-

ure 5.3). Fib-flutter corresponds to periods where the rhythm transitions in

quick succession between atrial fibrillation and flutter (Horvath et al. 2000),

with paroxysmal fibrillation describing periods where atrial fibrillation stops

and starts with high frequency. Such behavior naturally causes the variance

to increase and one might question whether it is still appropriate to classify

those periods as standard atrial fibrillation. We identify in the ECG of pa-

tient 04936 periods of fib-flutter which likely accounts for the high proportion
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of FN results;5 by inspecting the patient’s disorder map, we indeed observe

points annotated as atrial fibrillation with uncharacteristically high standard

deviation, signifying that fib-flutter would be a more accurate rhythm clas-

sification. Cases where the spectral entropy level threshold is not met can

occur when QRS complexes indicative of atrial fibrillation appear with un-

usually regular rhythm; such behavior would lie below the level threshold on

the disorder map. Owing to the small number of beats contained within each

window, such occurrences inevitably arise; the process of modal smoothing

lessens the impact of this phenomenon in the arrhythmia detection algorithm.

False positives (FPs occur when non-AF is classified as AF′), which com-

prise 4.0% of the afdb for β typically 30 s, may also have a physiological ex-

planation. During sinus arrhythmia, there are alternating periods of slowing

and increasing node firing rate, while still retaining QRS complexes indicative

of normal sinus rhythm. These alternating periods increase the irregularity

of beats within the spectral entropy window. If the variance threshold is also

satisfied, sinus arrhythmia may be incorrectly classified as AF′ by the ar-

rhythmia detection algorithm. Sinus arrest occurs when the sinoatrial node

fails to fire and results in behavior that is similar in principle to sinus ar-

rhythmia; these two conditions are likely responsible for the high proportion

of FPs (14.2%) that are observed in patient 05091.6

5For examples of fib-flutter in patient 04936, see times 17 785 s and 18 440 s in Ap-
pendix 5.1.

6For an example of sinus arrest in patient 05091, see time 6714 s in Appendix 5.1.
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5.4.3 Comparison to other methods

Vikman et al. (1999, 2005) showed that decreased ApEn values of heart beat

fluctuations have been found to precede (at timescales of the order an hour)

spontaneous episodes of atrial fibrillation in patients without structural heart

disease. We stress that the algorithm presented here is not intended to predict

in advance occurrences of fibrillation; rather, it is designed to detect the onset

of fibrillation as quickly as possible using only interbeat intervals. Tateno

and Glass (2000, 2001) present an atrial fibrillation detection method that is

statistical in principle and based upon an observed difference in the standard

density histograms of ∆RR intervals (the difference in successive interbeat

intervals). A series of reference standard density histograms characteristic

of atrial fibrillation (as assessed in the annotations) are first obtained from

the afdb. Their detection algorithm is re-run on the afdb by taking 100

interbeat intervals and comparing them to the reference histograms, where

appropriate predictions can then be made. The reference histograms rely on

the correctness of the annotations in order to determine fibrillation, whereas

the thresholds in our algorithm are only weakly dependent on the data set

under consideration. Figure 5.3 is an empirical observation, in future analyses

we would like to use fibrillation thresholds derived from a data set separate

from the one under consideration.

Sarkar et al. (2008) have developed a detector of atrial fibrillation and

tachycardia that uses a Lorentz plot of ∆RR intervals to differentiate between

rhythms. The detector is shown to perform better for episodes of fibrillation

greater than 3 min and has a minimum response time of 2 min. By contrast,
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our method is applicable to short sections of data, enabling quicker response

times to be used. We see our algorithm complementing other detection tech-

niques, with the potential for an implementation that combines more than

one method. Combining methods becomes increasingly relevant when run-

ning algorithms on data sets containing a variety of arrhythmias. As noted

by Tateno and Glass (2000, 20010), other arrhythmias often show irregular

RR intervals, and previous studies have found difficulty in detecting atrial

fibrillation based solely on RR intervals (Pinciroli & Castelli 1986; Slocum

et al. 1987; Murgatroyd et al. 1995; Andresen & Brüggemann 1998).

5.4.4 Systematic error

There are two intrinsic sources of error in the spectral entropy measure re-

lated to the phenomenon of spectral leakage: that due to the “picket-fence

effect” (where frequencies in the power spectrum fall between discrete bins,

see Salvatore & Trotta 1988) and that due to finite window effects (where, for

a given frequency, an integer number of periods does not fall into the spectral

entropy window, see Harris 1978; Nuttall 1981). We attempt to quantify this

error by applying the measure (with parameters as per the Data Analysis

section) to synthetic event series: a periodic series with constant interbeat

interval. For a heart rate range of 50–200 bpm in 1-bpm increments we

obtain 150 synthetic time series. We find the average error in the spectral

entropy over the 150 time series to be 0.02. The average standard deviation

value (with variance windows having M equal to 20 spectral entropy values)

over the 150 time series is 0.011± 0.009; the average error on these standard

deviation values due to windowing is 0.0002.
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The presence of some form of error associated with finite windows is un-

avoidable. We have attempted to minimize such errors by choosing parame-

ters that achieve a balance between usability and error magnitude. There is

still scope for fine-tuning parameters—in particular, trying a variety of win-

dow shapes to further reduce the affect of spectral leakage. However, we find

the general results to be robust to a range of window parameters, implying

any practical effect of windowing errors to be minimal when compared to the

other issues discussed in this section.

5.5 Further Work

Additional directions for this work include refining and extending our cardiac

study with a view to clinical implementation. Furthermore, we suggest that

rhythmic signals arising from other biological systems may have application

for the techniques described in this paper. An investigation of the optimal

windowing parameter set would be instructive since our findings suggest the

existence of physiological thresholds in the spectral entropy level and vari-

ance that are applicable to a variety of patients. As noted at the end of

Section 5.4.3, one challenge would be to investigate and improve the util-

ity of the measure (alone or combining methods) when applied to patients

that demonstrate a mix of different pathologies and arrhythmias. Adjusting

the spectral entropy window to covary with instantaneous heart rate so that

α always contains ten beats exactly would further reduce issues related to

variations in the heart rate. Extending the algorithm to include other dimen-

sions in the disorder map (e.g., heart rate) will likely improve the accuracy

of results and may increase the number of arrhythmias the spectral entropy
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can distinguish between.

An accurate automatic detector of atrial fibrillation would be clinically

useful in monitoring for relapse of fibrillation in patients and in assessing the

efficacy of antiarrhythmic drugs (Israel 2004). An implementation integrated

with an ambulatory ECG or heart rate monitor would be useful in improving

the understanding of arrhythmias on time scales longer than that available

using conventional ECG analysis techniques alone.

Measures of disorder in the frequency domain have practical significance

in a range of biological signals. For example, the regularity of the back-

ground electroencephalography (EEG is the measurement of electrical activ-

ity produced by the brain as recorded from electrodes placed on the scalp)

alters with developmental and psychophysiological factors: some mental or

motor tasks cause localized desynchronization; in addition, the background

becomes more irregular in some neurological and psychiatric disorders (see

Inouye et al. 1991; Rosso 2007 and references therein). The spectral entropy

method and the concept of the disorder map described in this paper are not

cardiac specific: it would be instructive to adapt these ideas to other rhyth-

mic signals where a rapid detection of arrhythmia would be informative.

5.6 Conclusion

In this paper we have presented an automatic arrhythmia detection algorithm

that is able to rapidly detect the presence of atrial fibrillation using only the

time series of patients’ beats. The algorithm employs a general technique

for quickly quantifying disorder in high-frequency event series: the spectral

entropy is a measure of disorder applied to the power spectrum of periods of
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time series data. The physiologically motivated use of the spectral entropy

is shown to distinguish atrial fibrillation and flutter from other rhythms. For

a given set of parameters, we are able to determine from a disorder map

two threshold conditions (based on the level and variance of spectral entropy

values) that enable the detection of fibrillation in a variety of patients. We

apply the algorithm to the MIT-BIH atrial fibrillation database of 25 pa-

tients. When the algorithm is set to identify abnormal rhythms within 6 s

it agrees with 85.7% of the annotations of professional rhythm assessors; for

a response time of 30 s this becomes 89.5%, and with 60 s it is 90.3%. The

algorithm provides a rapid way to detect fibrillation, demonstrating usable

response times as low as 6 s and may complement other detection techniques.

There also exists the potential for our spectral entropy and disorder map im-

plementations to be adapted for the rapid identification of disorder in other

rhythmic signals.
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5.7 Appendix

This appendix contains images of the electrocardiograms referred to in Sec-

tions 5.4.1 and 5.4.2. They represent examples where we believe the anno-

tations provided as part of the MIT-BIH atrial fibrillation database to be

incorrect, and where rhythms other than atrial fibrillation and atrial flutter

are present in patient electrocardiograms.

The following figures were obtained using the Chart-O-Matic facility on

the physionet website (Goldberger et al. 2000) for patients comprising the

MIT-BIH atrial fibrillation database (afdb). We give selected example elec-

trocardiograms (ECGs) to illustrate the point under consideration and stress

that there are additional times that could have been used for demonstrative

purposes. The rhythm assessments to which we are comparing are provided

as annotations included as part of the afdb. For other examples of ECGs

corresponding to the rhythms given here, see Bennett 2002.

5.7.1 Disagreements with annotations

Rhythm assessments have been questioned before (Tateno & Glass 2000,

2001); here we give explicit examples from the afdb where we believe the

ECG suggests a rhythm different from that given by the annotation. The

figures and ideas in this section pertain to Section 5.4.1 of the main text.

Instances where atrial fibrillation has been missed in annotations

We observe in Patients 08219 (Figure 5.4) and 08434 (Figure 5.5) periods of

atrial fibrillation that we believe to have been missed in the annotations but

are correctly identified by our detection algorithm. Cases such as these serve
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Figure 5.4: ECG for Patient 08219, starting at 11 880 s for a 10 s duration.
This period is denoted as being neither atrial fibrillation or atrial flutter
in the provided annotation, while we believe the ECG to suggest that the
patient is experiencing atrial fibrillation.

Figure 5.5: ECG for Patient 08434, starting at 9504 s for a 10 s duration.
This period is denoted as being neither atrial fibrillation or atrial flutter
in the provided annotation, while we believe the ECG to suggest that the
patient is experiencing atrial fibrillation.

to negatively impact the results of the algorithm unfairly; however, we note

that such instances comprise a small proportion of the afdb.

Instances where atrial flutter has been missed in annotations

Atrial flutter may have been misannotated in Patients 04936 (Figure 5.6) and

08219 (Figure 5.7). This unreliability of rhythm assessment, compounded

with the limited number of periods of atrial flutter in the database, prevents

us from drawing meaningful quantitative conclusions regarding the success

of the detection algorithm in identifying flutter. Despite this, we believe that

the spectral entropy is in principle still capable of identifying flutter.
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Figure 5.6: ECG for Patient 04936, starting at 7347 s for a 10 s duration.
This period is denoted as being neither atrial fibrillation or atrial flutter
in the provided annotation, while we believe the ECG to suggest that the
patient is experiencing atrial flutter.

Figure 5.7: ECG for Patient 08219, starting at 10 090 s for a 10 s duration.
This period is denoted as being neither atrial fibrillation or atrial flutter
in the provided annotation, while we believe the ECG to suggest that the
patient is experiencing atrial flutter.
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Figure 5.8: ECG for Patient 04936, starting at 17 785 s for a 10 s duration.
This period is denoted as being atrial fibrillation in the provided annotation,
while we believe the ECG to suggest that the patient is experiencing fib-
flutter.

5.7.2 Other rhythms

The unreliability of parts of the annotations still does not account for all false

predictions produced by the detection algorithm. We suggest the presence

of other rhythms within the afdb to be an additional factor that needs to be

considered. The figures and ideas in this section pertain to Section 5.4.2 of

the main text.

Instances of fib-flutter

Fib-flutter denotes periods where the rhythm transitions in quick succession

between atrial fibrillation and flutter (Horvath et al. 2000). Such behavior

naturally causes the variance to increase (thereby exceeding the standard

deviation threshold in the algorithm for classification as atrial fibrillation)

and one might question whether it is still appropriate to classify those periods

as standard atrial fibrillation. We identify in the ECG of Patient 04936

periods of fib-flutter which likely accounts for the high proportion of false

negative results (Figures 5.8 and 5.9).
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Figure 5.9: ECG for Patient 04936, starting at 18 440 s for a 10 s duration.
This period is denoted as being atrial fibrillation in the provided annotation,
while we believe the ECG to suggest that the patient is experiencing fib-
flutter.

Figure 5.10: ECG for Patient 05091, starting at 6714 s for a 10 s duration.
This period is denoted as being neither atrial fibrillation or atrial flutter
in the provided annotation, while we believe the ECG to suggest that the
patient is experiencing sinus arrest.

Instances of sinus arrest

Sinus arrest occurs when the sinoatrial node fails to fire, resulting in increased

irregularity of the heart rhythm, whilst still retaining QRS complexes indica-

tive of normal sinus rhythm; this condition (along with sinus arrhythmia) is

likely responsible for the high proportion of false positives seen in Patient

05091 (Figure 5.10).

155



Conclusion

The natural world makes no distinction between scientific disciplines. In-

creasingly, answers to scientific questions lie at the intersection of tradi-

tional disciplines. This thesis has applied techniques developed in physics

and mathematics to problems in ecology and medicine.

I have shown how simple methods of time series analysis can enable rapid

detection of cardiac arrhythmia; how ecosystems may respond and adapt to

the loss of species; how species can modify their feeding interactions in man-

modified environments; and how spatial landscape can affect the spread of

fluctuations of venture capital firm populations.

Moving forward, my current research is motivated by one fundamental

question: What does a food web represent?

Practically, we must ask: (i) What ecological mechanisms underlie food-

web structure? and (ii) How does food-web structure change through time?

What ecological mechanisms underlie food-web structure? How does

individual-level species behaviour lead to observed food-web structure (Stouf-

fer 2010)? How does behaviour underlie differences (or similarities) among

distinct food-web types (Thébault & Fontaine 2010)? Can we combine

these distinct food-web types to understand complete patterns of interactions

within ecological communities (Lafferty et al. 2008)? How do environmental
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factors affect species interactions (Laliberté & Tylianakis 2010)?

Exciting work has begun to address these questions. Answers to these

questions will lead to new questions. Progress relies on the exchange of ideas,

many of which will originate in fields other than ecology.

How does food-web structure change through time? What assembly

mechanisms lead to observed food-web structure (Piechnik et al. 2008)? Are

current, static, models consistent with empirical data on food-web assem-

bly (Albrecht et al. 2010)? What role do invasive species play in food-web

dynamics (Lopezaraiza-Mikel et al. 2007)?

Experiment and theory are advancing. Ecological data are improving and

more sophisticated methods of analysis are developing. We are increasingly

achieving that fundamental goal of ecology—a central tenet shared by the

physical sciences—prediction.
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Laliberté, E. & Tylianakis, J.M. (2010). Deforestation homogenizes tropical

parasitoid-host networks. Ecology, 91, 1740–1747.

157



Lopezaraiza-Mikel, M.E., Hayes, R.B., Whalley, M.R. & Memmott, J. (2007).

The impact of an alien plant on a native plant-pollinator network: an exper-

imental approach. Ecol. Lett., 10, 539–550.

Piechnik, D.A., Lawler, S.P. & Martinez, N.D. (2008). Food-web assembly

during a classic biogeographic study: species “trophic breadth” corresponds

to colonization order. Oikos, 117, 665–674.

Stouffer, D.B. (2010). Scaling from individuals to networks in food webs.

Func. Ecol., 24, 44–51.
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